Effects of plant growth-promoting rhizobacteria on uptake and utilization of phosphorus and root architecture in apple seedlings under water limited regimes
Main Article Content
Abstract
The aim of this research was to examine the relationships among Pseudomonas fluorescens (YX2) plant growth promoting rhizobacteria (PGPR), phosphorus (P) absorption by plants, and root system architecture in apple seedlings exposed to mild, moderate or severe drought stresses. All the treatments were divided into two groups: 1) inoculated with a plant rhizobacterial strain (YX2), and 2) the non-inoculated control. Under drought stress, the YX2 inoculation improved root growth, root activity by 6%, and uptake of P, thereby promoting apple seedling growth along with the dry weight of above-ground plant parts in the mild and moderate water stress regimes. Furthermore, the inoculation also promoted total P contents in plants under both mild and moderate drought stresses. Overall, application of Pseudomonas fluorescens (YX2) is a promising approach to enhance apple production in agricultural production systems.
Download Statistics
Downloads
Article Details
Citation Count and Citing Articles
Article Processing Dates
Accepted 17-01-22
Published 18-03-22
PlumX Metrics @ Elsevier
Plaudit
References
Barnawal, D., Bharti, N., Pandey, S. S., Pandey, A., Chanotiya, C. S., and Kalra, A. (2017). Plant growth promoting rhizobacteria enhances wheat salt and drought stress tolerance by altering endogenous phytohormone levels and tactr1/tadreb2 expression. Physiol Plant 161(4):502-514.
Calvo-Polanco, M., Sánchez-Romera, B., Aroca, R., Asins, M. J., Declerck, S., Dodd, I. C., Martínez-Andújar, C., Albacete, A., and Ruiz-Lozano, J. M. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47-57.
Chauhan, H., Bagyaraj, D. J. (2015). Inoculation with selected microbial consortia not only enhances growth and yield of french bean but also reduces fertilizer application under field condition. Sci Hortic 197(1):441-446.
Ciereszko, I., Kleczkowski, L. A. (2002). Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. BBA-Gene Structure Expr 1579(1):43-49.
Comas, L. H., Becker, S. R., Cruz, V. M., Byrne, P. F., and Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Front Plant Sci 4(2):442.
Dimkpa, C., Weinand, T., and Asch, F. (2010). Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Env 32(12):1682-1694.
Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two differoilent soils. Appl Soil Ecol 36(2): 184-189.
Gautam, M. K., Mead, D. J., Frampton, C. M., Clinton, P. W., and Chang, S. X. (2003). Pinus radiata in a sub-humid temperate silvopastoral system: modelling of seasonal root growth. Forest Ecol Man 182(1):303-313.
Glick, B. R., Cheng, Z. Y., Czarny, J., and Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329-339.
Greco, S. A., Cavagnaro, J. B. (2003). Effects of drought in biomass production and allocation in three varieties of Trichloris crinita, P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecol 164(1):125.
Guo, W., Li, B., Zhang, X., and Wang, R. (2007). Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. J Arid Environ 69(3):385.
Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., and Park, S. W. (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245-258.
Heuer, S., Gaxiola, R., Schilling, R., Herrera-Estrella, L., López-Arredondo, D., Wissuwa, M., Delhaize, E., and Rouached, H. (2017). Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J 90(5):868.
Huang, X. F., Zhou, D., Lapsansky, E. R., Reardon, K. F., Guo, J., Andales, M. J., Vivanco, J. M., and Manter, D. k. (2017). Mitsuaria, sp. and Burkholderia, sp. from Arabidopsis, rhizosphere enhance drought tolerance in Arabidopsis thaliana, and maize ( Zea mays, L.). Plant Soil 419(1-2):1-17.
Wang, H. J., Yang, A., Wang, J., Zhu, A., Dai, J., Ming, H. W., and Lin, X. (2015). Arbuscular mycorrhizal fungal species composition, propagule density, and soil alkaline phosphatase activity in response to continuous and alternate no-tillage in Northern China. Catena 133(25):215-220.
Dodd, J., Burton, C. C., Burns, R. G., and Jeffries, P. (1987). Phosphatase activity associated with the roots and the rhizosphere of plants infection with vesicular-arbuscular mycorrhizal fung. New Phytol 107(1):163-172.
Kasim, W. A., Osman, M. E., Omar, M. N., El-Daim, IAA., and Meijer, J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122-130.
Kunert, K. J., Vorster, B. J., Fenta, B. A., Tsholofelo, K., Giuseppe, D., and Foyer, C. H. (2016). Drought stress responses in soybean roots and nodules. Front Plant Sci 7(442):1015.
Mantelin, S., Touraine, B. (2004). Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394): 27-34.
Mayak, S., Tirosh, T., Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):5.
Olsen, S. R., Cole, C. V., Watanabe, R. S., Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circ 939:19.
Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., and Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50(3):118-126.
Saia, S., Rappa, V., Ruisi, P., Abenavoli, M. R., Sunseri, F., Giambalvo, D., Frenda, A. S., and Martinelli, F. (2015). Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front in Plant Sci 6:815.
Sarma, R. K., and Saikia, R. (2014). Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa, GGRJ21. Plant Soil 377(1-2):111-126.
Schachtman, D. P., Reid, R. J., and Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant physiol 116(2):447-453.
Schimel, J. P., Hattenschwiler, S. (2007). Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39(7):1428-1436.
Shen, J., Li, C., Mi, G., Li, L., Yuan, L., Jiang, R., and Zhang, F. (2013). Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of china. J Exp Bot 64(5):1181-1192.
Shibata, R., Yano, K. (2003). Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction. Appl Soil Ecol 24(2):133-141.
Silva, P. A., Cosme, V. S., Rodrigues, K. C. B., Detmann, K. S. C., Leão, F. M., Cunha, R. L., Festucci Buselli, R. A., Damatta, F. M., and Pinheiro H. A. (2017). Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta Physiol Plant 39(2):58.
Smith, S. E., Jakobsen, I., Grønlund, M and Smith, F. A. (2011). Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiol 156(3):1050-1057.
Singh, V., Pallaghy, C. K., and Singh, D. (2006). Phosphorus nutrition and tolerance of cotton to water stress: I. seed cotton yield and leaf morphology. Field Crop Res 96(2):199-206.
Suriyagoda, L., Costa, W. A. J. M. D., and Lambers, H. (2014). Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant Soil 384(1-2):53-68.
Wang, S., Liang, D., Li, C., Hao, Y., Ma, F., and Shu, H. (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Bioch 51(2): 81-89.
Verhagen, B. W., Trotelaziz, P., Couderchet, M., Hofte, M., and Aziz, A. (2010). Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61(1): 249-260.
Zhonghui, L., Meng, W., Yan, Y., Zhao, S., Zhang, Y., and Wang, X. (2017). Effect of composted manure plus chemical fertilizer application on aridity response and productivity of apple trees on the loess plateau. Arid Land Res Manag 31(4):1-16
Zhu, J. K. (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(53):247.