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Soil salinity negatively affects plants at multiple levels, inducing ionic and
metabolic imbalances that directly affect growth and productivity. Plants SECTION
counter salinity stress through a combination of adaptive traits that facilitate Plant Biology (PB)
cellular ion homeostasis and prevent excessive sodium (Na*) accumulation or
its detrimental effects. This review provides in+-depth information focusing on HANDLING EDITOR
pla+nt salinity tolerance mechanisms. The Na -exclusion, xylem loading, and Athar, H.R. (CE, BP)
Na'-vacuolar sequestration by compartmentalization are primarily achieved by T
the set of antiporters (HKT1, NHX1, NHX2, and SOS1) located at the root cell
plasma membrane, xylem parenchyma, and the tonoplast. Plants regulate Na*
xylem loading to restrict Na* translocation to aerial tissues, mediated by SOS1
and HKT1. Cellular compartmentalization is regulated by both Na*/H* and
K*/H* antiporters, which maintain ion homeostasis. Osmoregulation in cells is
achieved with the help of both organic osmolytes (proline, glycine betaine,
sugars, polyols, etc.) and inorganic ions (Na*, K*, Ca%*), which counter salt-
induced osmotic stress. However, oxidative stress is mitigated by various KEYWORDS
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enzymatic antioxidant molecules (e.g., vitamin C, glutathione, etc.). Apart from Hormonal regulation;
g . a-A o + + . .
that, the roles of various hormones, for instance, abscisic acid, ethylene, Na*/H antlpgrters,
salicylic acid, jasmonates, brassinosteroids, auxins, gibberellins, and cytokinins Osmgregulatlon;
are discussed at length in this review. Salinity stress
Introduction

“No toxic substance restricts plant growth more than does salt” (Zhu, 2002). According to the
latest data released by the FAO, the global area of salt-affected soils has reached 1,381 million ha,
which is equivalent to 10.7% of the global land (FAO and UN, 2024). Previously, salt-affected lands
were estimated at ~830-950 million ha (Ruan et al., 2010), which means that there has been a 35%
increase in soil salinity across the globe (~ 2.3% annually) over the last 15 years. Likewise, Pakistan is
losing 40,000 ha annually due to soil salinization, and a total of 5.7 Mha has been lost (IAEA, 2024). It
is pertinent to mention that the dominant ions in salt-affected soils include Na*, K*, Ca*", Mg*, CI,
HCO;, and SO, (Koull and Chehma, 2016). In contrast, most cash crops are glycophytes that cannot
survive NaCl concentrations over 50 mM (Navarro-Torre et al., 2023). Therefore, soil salinity impairs
crop productivity and decreases the profitability of most of the glycophytic cash crops, leading to
considerable economic losses (Nicolas et al., 2023).

Soil salinity interferes with plant physiological functioning at all levels and during every devel-
opmental stage (Atta et al., 2023). First and foremost, salt-induced osmotic stress inhibits cellular
expansion by reducing turgor pressure (Taiz and Zeiger, 2010; Colin et al., 2023). Moreover, hyperos-
molality reduces soil matric potential, thereby reducing water uptake by seeds or plant roots
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(Tedeschi et al., 2017). Seed germination is the most crucial stage of plant development and one of
the most susceptible stages to salinity stress. Even the seed germination of halophytes is inhibited by
salinity stress (Hadi et al., 2018). This inhibition of germination is primarily linked to salt-induced os-
motic stress, which inhibits seed water uptake and imbibition (Chartzoulakis and Klapaki, 2000;
Munns and Tester, 2008; Khan et al., 2022). At the leaf level, salinity stress causes damage to the
chloroplast envelope and disintegration of thylakoids, directly affecting photosynthetic light-
harvesting complexes (Stefanov et al., 2016). Moreover, salinity stress can enhance chlorophyllase
activity (the enzyme involved in chlorophyll breakdown) and alter chlorophyll biosynthesis by inhibit-
ing 5-ALA biosynthesis (Santos, 2004; Li et al., 2024). Consequently, salinity induces instability in the
chlorophyll protein complex, reduces PSII efficiency, and causes a reduction in the Fv/Fm ratio, con-
tributing to photoinhibition (Lichtenthaler et al., 2005; Chaves et al., 2009; Shu et al., 2012). Moreo-
ver, leaf photosynthetic activity is severely affected by salinity stress because of disturbed plant wa-
ter relations, reducing overall carbon dioxide fixation (Kim et al., 2010; Tardieu et al., 2011; Hnilicko-
va et al., 2021; Wang et al., 2024).

In addition to these salinity-induced effects, the most prominent is the induction of ion toxicity,
also known as sodium toxicity, within cells. Although Na is a beneficial element for some plants (hal-
ophytes), it is extremely toxic to glycophytes. Higher levels of Na inside the cells cause ion disequilib-
rium, which disturbs cell metabolism (Teakle and Tyerman, 2010; Kérner et al., 2025). Both Na* and
K" compete at the HKT site, but higher soil Na* concentrations result in high Na* uptake and subse-
guent vascular transport to the leaves, causing ion toxicity and physiological disturbance (Hasegawa
et al., 2000; Aleman et al., 2009; Taiz and Zeiger, 2010; Hasegawa, 2013; Song et al., 2024; Wang et
al., 2024b). This ultimately causes growth reduction in crops, including cereals (Lin and Kao, 2001). It
is pertinent to mention that ion toxicity also results in oxidative stress through enhanced production
of reactive oxygen species (ROS). Salinity-induced production of superoxide anion (O,’) has been re-
ported inside the thylakoid membrane and singlet oxygen (*0,) production at PSlI, and salt-induced

overproduction of hydrogen peroxide (H,0,) and hydroxyl radical (.OH) within the chloroplasts via
the Fenton reaction and Haber-Wiess reaction (Wagner et al., 2004; Mittler et al., 2011; Jian et al.,
2025). The overproduction of ROS is extremely dangerous because it causes membrane damage,
electrolyte leakage, DNA damage, protein oxidation, and photosynthetic pigment degradation (Pam-
plona, 2008; Ashraf, 2009; Tanoua et al., 2009; Sachdev et al., 2023; Rao et al., 2025). The overall re-
sult of these physio-biochemical changes is evident in the form of compromised yield and productivi-
ty losses in various cash crops, including wheat (Igbal and Ashraf, 2013; Koevoets et al., 2016; Shafiq
et al., 2021), rice (Zheng et al., 2023; Meng et al., 2025), sugarcane (Khan et al., 2022), maize (Liao et
al., 2024), sorghum (Yang et al., 2025; Fu et al., 2025), barley (Bouhraoua et al., 2025; Sreesaeng et
al., 2025), and cotton (Xiao et al., 2023; Ma et al., 2024; Li et al., 2025).

In the current review, we have discussed at length multiple physio-biochemical and molecular
processes involved in salinity-stressed plants and how far these processes can enable such plants to
adapt to salinity stress.

Adaptive plant traits that contribute to salinity tolerance

In this section, special emphasis is given to the adaptive plant mechanisms that contribute to sa-
linity stress tolerance. Various plant species belonging to different families and ecological niches dis-
play a wide range of characteristics that assist them in surviving salt stress, which are discussed here
(Figure 1).

1. Sodium exclusion: The first line of defense

As previously mentioned, Na* above certain limits becomes toxic; therefore, its concentration
must be regulated efficiently to avoid metabolic distress. All plants, including halophytes, exhibit var-
ious mechanisms to exclude Na®*from their shoots (Munns and Tester, 2008; Munns et al., 2020). The
Na'-exclusion is a highly desirable trait for breeding salt-tolerant crops (Assaha et al., 2017; Ismail
and Horie, 2017; Garcia-Daga et al., 2025). This is achieved by a combination of membrane trans-
porters, viz. High-Affinity Potassium (K*) transporter 1 (HKT1), Na*/H" exchanger (NHX1 and NHX2),
and an SOS1 antiporter, part of the Salt-Overly Sensitive (SOS) pathway, function to maintain Na* be-
low the permissible limits. The specific roles of these membrane transporters are discussed here in
detail.
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Figure 1: A schematic diagram representing different adaptive traits in plants for salinity tolerance. 1. Sodi-
um exclusion 2. Na* xylem loading 3. Compartmentalization 4. Osmotic adjustment 5. Antioxidants 6. Hor-
mones. HKT1, High-Affinity Potassium (K') transporter 1; NHX1 and NHX2, Na*/H" exchangers; SOS1, Salt-
Overly Sensitive (SOS) 1.

High-Affinity Potassium (K*) transporter 1 (HKT1) was the first HKT discovered in wheat and is an
HKT protein that acts as a Na* channel responsible for Na* exclusion (Uozumi et al., 2022; Wang et
al., 2024a). The HKT1 is a uniporter that regulates Na* levels in different plant species. It is pertinent
that HKT1 is found in all plants; however, HKT2 transporters are specific to monocots (Platten et al.,
2006; Riedelsberger et al., 2021). Additionally, the activity of HKT1 is highly regulated and tissue-
specific, and its localization in the vascular bundle (either xylem or phloem) predominantly deter-
mines its physiological role (reviewed by Garcia-Daga et al., 2025). In Arabidopsis thaliana, AtHKT1;1
mediates Na* secretion from the stelar apoplast and xylem into root xylem parenchyma cells, thereby
reducing Na’ transport to shoots. However, the athkt1;1 knockout mutant failed to stop Na®
transport to the shoots, even under non-saline conditions (Rus et al., 2006). Nonetheless, HKT1 is
variably expressed in the root and shoot tissues of Arabidopsis thaliana, and accessions with lower
HKT1 expression levels in the roots exhibit higher Na* concentrations in the shoots, and vice versa
(Baxter et al., 2010). Studies have also reported that HKT1 might control Na* accumulation in repro-
ductive tissues, contributing to viable seed production under salinity stress (An et al., 2017). Similar-
ly, HKT1-mediated regulation of shoot Na* content has been reported in wheat (Munns et al., 2012;
Byrt et al., 2014), maize (Zhang et al., 2018), rice (Kobayashi et al., 2017; Shohan et al., 2019), barley
(Houston et al., 2020), tomato (Jaime-Pérez et al., 2017; Romero-Aranda et al., 2020), and berries,
including grapes and blueberries (Song et al., 2024).

Na® exclusion can also be achieved through Na* compartmentalization in the vacuole with the
help of both NHX1 and NHX2, which are Na’/H" exchangers located at the tonoplast (Liu et al., 2017;
Zhang et al., 2025a). A Na’/H" transporter located at the root cell plasma membrane has also been
reported, which is expressed by the SOS1 gene, and its role in K" homeostasis has been proposed
(Blumwald et al., 2000; Wang et al., 2017). Similarly, overexpression of halophytic NHX1 in Arabidop-
sis thaliana confers salt stress tolerance via Na* exclusion and cytosolic K* retention (Liu et al., 2017).
Likewise, overexpression of NHX1 in transgenic plants, viz. Vigna radiata, Nicotiana tabacum, and
Panicum virgatum have been shown to have enhanced salt tolerance linked with Na*-exclusion (Sa-
hoo et al., 2016; Zhang et al., 2017b; Huang et al., 2017). Above all, salt tolerance in plants has been
linked to their ability to exclude sodium (Wang et al., 2017; Chen et al., 2024; An et al., 2025; Shabala
et al., 2025).
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1.a. Xylem loading: Control of Na* transport to shoots

Interestingly, Na* exclusion cannot contribute to salinity tolerance alone, and it works along with
other mechanisms to induce salt tolerance. In the halophytic grass species Puccinellia tenuiflora, the
co-expression of SOS1, HKT1;5, and NHX1 contributed to Na* efflux and K* retention (Zhang et al.,
2017b). Therefore, the control of Na* transport into the xylem is another prominent phenomenon by
which plants achieve ion homeostasis and eliminate excessive Na®.

Na® ions enter plant roots via pressure-driven bulk flow (Taiz and Zeiger, 2010), and plant roots
tend to avoid ion toxicity by transporting excess Na® into the shoots via xylem vessels during xylem
loading (Shabala et al., 2010; Shabala et al., 2025). It takes place at the interface of xylem parenchy-
ma by specific ion transporters, including Na*/H’, Na*-permeable non-selective cation channels, and
Na': K': CI" cotransporters (Zhu et al., 2017; Ishikawa and Shabala, 2019). Studies have also suggested
that the expression of SOS1 mediates Na* xylem loading (Shi et al., 2002; Shabala and Mackay, 2011;
Assaha et al., 2025). Transgenic plants overexpressing Na*-efflux transporters have high root-to-shoot
Na® transport (Zhang et al., 2017b). Whereas, the HKT is believed to be involved in Na*-retrieval or
xylem unloading (Munns and Tester 2008; Horie et al., 2009). This controlled Na* transport to plant
aboveground tissues prevents metabolic disruption and ion toxicity in the root cells (Liuchli et al.,
2008; Zhang et al., 2025b). In agreement, elevated Na* concentrations in the xylem tissue of barley
genotypes have been recorded and explained based on the involvement of inorganic ions for osmotic
adjustment (Shabala et al. 2010; Bose et al. 2014; Zeng et al., 2015), which serve as a cheap osmotica
as energetic costs are lower (Ishikawa and Shabala, 2019). Therefore, Na* xylem loading and its se-
questration in vacuoles, along with K* retention, could serve as a faster and more efficient strategy to
maintain ion homeostasis. It has also been reported that when sufficient Na* is sequestered in the
vacuoles of mesophyll cells, xylem Na* loading and transport are stopped to maintain manageable
concentrations of Na* (Bose et al. 2014; Zhu et al., 2017).

An alternate viewpoint is that the ability to transport fewer Na* ions to shoots is a desirable trait
for salinity tolerance (Munns and Tester, 2008). For example, when salt-sensitive rice and salt-
tolerant barley were exposed to salinity stress, there was a sharp increase in the Na* concentration in
the xylem sap of barley, whereas the Na* levels in the xylem sap of rice remained low. The research-
ers concluded that rapid Na*-xylem loading contributes to the upregulation of adaptive responses,
leading to salinity tolerance (Ishikawa and Shabala, 2019). A third opinion is that under moderate
salinity stress, SOS1 expression actively mediates Na* xylem loading, as sos1 mutants exhibit less Na*
accumulation (Shi et al., 2000). At higher salinity levels, Na* entry into the xylem is a passive process.
Above all, the Na* fraction in the xylem of Arabidopsis could range between 5-9 mM when plants
were exposed to 100 mM NaCl for two days (Shi et al., 2002; Horie et al., 2006). Moreover, plant sa-
linity tolerance is closely associated with the ability to transport, compartmentalize, and mobilize Na*
ions, and its radial transport into the xylem tissue enables homeostatic control (Apse and Blumwald,
2007; Hu et al., 2025; Tibesigwa et al., 2025).

1.b. Compartmentalization: The cellular detoxification

Cells cope with toxic levels of Na* entering the cytosol via vacuolar sequestration. The cost of
pumping Na® ions into the vacuole is only 10% compared to that of the de novo synthesis of 1 mol of
organic osmolytes (Shabala and Shabala, 2011). Therefore, the removal of excessive Na* ions inside
the cells is achieved by Na* vacuolar sequestration mediated by NHX transporters located in the to-
noplast (Wu et al., 2018). These intracellular NHX transporters comprise subclass 1 of cation/proton
antiporters, which include both Na*/H* and K'/H" antiporters (Wang and Wu, 2013). These Na*/H*
antiporters include AtNHX1, AtNHX2, AtNHX3, AtNHX4, ItNHX1, ItNHX2, and OsNHX1 (Gierth and
Méser, 2007), whereas there are some K'/H® antiporters, including CHX13, CHX17, CHX20, and
CHX23 from the CPA2 family, that participate in K* homeostasis (Ren et al., 2013; Wu et al., 2021). In
this context, the upregulation of the NHX1 gene in Arabidopsis, barley, and alfalfa has been reported
under salt stress (Gaxiola et al., 1999; Adem et al., 2014; Sandhu et al., 2017). Likewise, overexpres-
sion of AtNHX1 enhanced Na® vacuolar sequestration and contributed to K" homeostasis and plant
growth under saline conditions (Rodriguez-Rosales et al., 2009; Leidi et al., 2010; Bassil et al., 2011;
Liu et al., 2025). Similarly, overexpression of NHX1 improved salt tolerance in Arabidopsis (Apse et al.,
1999), rice (Chen et al., 2007), and tobacco (Gouiaa et al., 2012).

Apart from NHX1, the role of SOS1 (also known as Na‘’/H" exchanger or NHX7) transporter is
significant for Na*-vacuolar sequestration in plants. In this context, the Si application enhanced NHX1
and SOS1 expression in zucchini, which enhanced salt stress tolerance (Zhang et al., 2024). Recently,
using cryo-imaging, Ramakrishna et al. (2025) confirmed that SOS1 is involved in Na*-vacuolar
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transport and subsequent sequestration in Arabidopsis root meristematic cells (Ramakrishna et al.,
2025). Moreover, they reported concentration-dependent Na*-accumulation patterns, revealing that
low external Na® levels led to its accumulation in the cell walls, whereas high Na* concentrations
caused SOS1 accumulation as the late endosomes and prevacuoles and their localization in the plas-
ma membrane and tonoplast (Ramakrishna et al., 2025). The internalization of SOS1 proteins into the
tonoplast under salt stress has also been confirmed in Arabidopsis and is involved in Na* compart-
mentalization (Liu et al., 2025). Additionally, the subcellular localization of SOS1 at vacuolar and
plasma membranes has also been reported in the salt-tolerant species Salicornia bigelovii (Salazar et
al. 2024). Hence, it is now proposed that under salt stress, SOS1 has a dual role in Na* vacuolar com-
partmentalization and its extrusion to the apoplast (Qi and Qiu, 2025; Ramakrishna et al., 2025).

2. Osmotic adjustment

Adaptation to salinity is achieved at multiple levels, and one of the most fundamental adaptive
traits is osmotic adjustment. The synthesis of compatible solutes in response to osmotic shock is
achieved, and both organic and inorganic components contribute to osmotic adjustment in the cells
and tissues under salinity stress. Plants exposed to salt stress can experience several-fold increases in
the amounts of organic osmolytes (Sakamoto and Murata 2000; Amiri et al., 2024). However, the en-
ergetic costs associated with osmotic adjustment are also very high. Raven (1985) reported that for
the synthesis of 1 mole of compatible solutes, around 40-60 moles of ATP are required. Nonetheless,
these osmolytes are synthesized and retained inside the cytosol to balance the cell’s osmotic poten-
tial under salinity stress (Flowers and Colmer, 2008; Kaur et al., 2024). These include proline, glycine
betaine, sugars, and polyols, which do not interfere with cellular metabolic pathways (Ruffino et al.,
2010; Shabala and Shabala, 2011). Increased synthesis of dehydrin proteins under salt stress has also
been reported (Rorat, 2006; Brini et al., 2007; Zhang et al., 2025c). Most importantly, osmotic ad-
justment is not solely reliant on organic components; rather, the incorporation of inorganic ions plays
a significant role in ionic balance, making it a two-way strategy. The retention of inorganic ions has
been reported in both glycophytes and halophytes (Flowers and Colmer, 2008; Shabala and Shabala,
2011; Shabala and Mackay, 2011; Hasegawa, 2013).

The retention of inorganic ions, particularly K, provides additional support for osmotic adjust-
ment in plants under salt and drought stress (lannucci et al., 2002; Shafiq et al., 2015; Hammami et
al., 2017). Potassium (K) is a macronutrient for plants, which is essentially involved in protein synthe-
sis, enzyme activation, regulation of membrane potential, regulation of stomata, and photosynthesis
(Gattward et al., 2012; Adams and Shin, 2014; Shabala, 2017; Ameen et al., 2024). The retention of
K" in the mesophyll cells of halophytes enhances salinity tolerance (Percey et al., 2016). Under salini-
ty stress, cytosolic K™ levels contribute to ion homeostasis, and the Na*/K" ratio is a determinant of
salt tolerance (Shabala and Cuin, 2007; Cuin et al., 2009; Barragan et al., 2012; Shabala, 2017; Choi et
al., 2024). It has also been reported that the overexpression of AhNHX1, a K'/H" antiporter, improved
K" retention in tobacco and Arabidopsis, conferring salt tolerance (Zhang et al., 2017a; Liu et al.,
2017).

In addition to K*, Ca** ions play a significant role in regulating plant stress responses under salt
stress. The calcium (Ca) ions are essentially required for the activation of various cellular enzymes
and the regulation of ion transport (Pikor et al., 2024). In addition, the Ca®" ions also contribute to
osmotic adjustments through regulation of gene expression. For example, the application of Ca** al-
leviated salinity stress in multiple crops, including Vicia faba (Morgan et al., 2017), rice (Rahman et
al., 2016), brinjal, chilli, and soybean (Baba et al., 2017).

3. Antioxidants

The role of reactive oxygen species (ROS) as secondary messengers in many signal transduction
pathways has already been proven, such as modulating gene expression, hormonal pathways, and
programmed cell death (when necessary) (Zhang et al., 2016; Bhattacharjee, 2019; Liao et al., 2025;
Lindsay and Rhodes, 2025). These ROS include singlet oxygen (*0,), superoxide (0,"), hydrogen per-
oxide (H,0,), and the hydroxyl radical ("OH). Among ROS, H,0, is the most stable and mobile ROS; it
triggers antioxidant gene expression, activates the MAPK cascade, and communicates stress signals
between cells and tissues within the plant (Yang and Guo, 2018; Porter et al., 2025). Early ROS burst
(mainly H,0,) under salinity stress is necessary to initiate the downstream defense response, as it
helps initiate the defense gene expression and activate ion transporters, e.g., SOS1 and NHX1 (Zhang
et al., 2016). Furthermore, it also regulates osmolyte production for metabolic homeostasis. Exces-
sive accumulation of ROS becomes harmful, as high or prolonged ROS levels cause lipid peroxidation,
DNA damage, protein oxidation, dysfunctional chloroplasts and mitochondria, and cell death at ex-
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treme conditions (Li et al., 2022; Ombale et al., 2025). This happens when ROS production outpaces
scavenging capacity, resulting in an overwhelmed antioxidant defense system, such as in salt-
sensitive genotypes.

The ROS are both signaling agents and toxins, and this is known as the ROS paradox. A balanced
ROS-antioxidant homeostasis is the key adaptive strategy for tolerant species and/or genotypes. To
keep ROS levels under control to survive under salt stress, plants utilize both enzymatic and non-
enzymatic antioxidative mechanisms. Although these antioxidants alone are not completely suffi-
cient to overcome salinity stress, rather they should work in coordination with other salinity adaptive
mechanisms such as ion transporters, osmolyte production, and hormone regulation signaling.

3.a. Enzymatic antioxidants

Enzymatic antioxidative enzymes involve enzymes that directly detoxify ROS. Under salinity
stress, plants mediate a complex response involving multiple classes of antioxidants. Major catego-
ries of enzymes involve superoxide dismutases, peroxidases, catalases, glutathione system enzymes,
ascorbate-glutathione cycle enzymes, and thiol-related enzymes (Foyer and Kunert, 2024). Each cat-
egory contributes differently under salinity stress (Rajput et al., 2021). For instance, superoxide dis-
mutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) act directly on ROS, while glutathione
reductase (GR) and dehydroascorbate reductase (DHAR) maintain reductant pools. Additionally,
peroxiredoxins and peroxidase (POD) modulate ROS signaling.

Superoxide anion scavengers include dismutase (SOD), which converts O™ into H,0,, and is the
first line of defense against oxidative stress. Peroxidases include ascorbate peroxidase (APX), guaiacol
peroxidase (POD), and class Ill peroxidases. They reduce H,0, using electron donors (ascorbic acid,
phenolics) into water, as APX uses ascorbate to convert H,0, into water. They detoxify H,0; in chlo-
roplasts, cytosol, and apoplasts and are involved in stress signaling and cell wall strengthening. Cata-
lase (CAT) converts H,0, into water and oxygen without requiring a reductant and is active mostly in
peroxisomes (Yemelyanov et al., 2022). It is critical for eliminating in peroxisomes, especially under
stress conditions. Enzymes from the glutathione system, such as glutathione reductase (GR) and glu-
tathione peroxidase (GPX), maintain the GSH pool and detoxify lipid peroxidases and H,0,. They sus-
tain cellular redox homeostasis, which is essential for the glutathione-ascorbate cycle under saline
conditions (Zheng et al., 2021; Foyer and Kunert, 2024). Furthermore, enzymes in the ascorbate-
glutathione (AsA-GSH) cycle regenerate ascorbate from oxidized forms using NAD(P)H or GSH, includ-
ing monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Under
salinity stress, they maintain ascorbate levels for APX function, which is critical for detoxification of
H,0, and oxidative balance. Thiol-related enzymes, such as peroxiredoxins (PRX), thioredoxins (TRX),
and glutaredoxins (GRX), reduce H,0,, lipid peroxides, or protein disulfides using thiol donors and
protect proteins and membranes from oxidative damage under salt stress (Van Breusegem and Mit-
tler, 2023).

Under salt stress, genes encoding antioxidant enzymes are upregulated by specific transcription
factors, which recognize stress-responsive cis-elements in the promoter regions of these genes. Key
transcription factor families include NAC, DREB (Dehydration-Responsive Element Binding proteins),
and CBF (C-repeat Binding Factor). These TFs are widely implicated in abiotic stress signaling (Chen et
al., 2021; Zhao et al., 2023). NAC (NAM, ATAF1/2, and CUC2) proteins bind to the NAC recognition
sequences (NACRS) and activate the expression of antioxidant genes such as SOD, APX, and GR, lead-
ing to enhanced ROS scavenging (Hu et al., 2006; Wang et al., 2022; Gupta et al., 2024). DREB tran-
scription factors, particularly those in the DREB1/CBF subfamily, regulate genes containing DRE/CRT
(dehydration-responsive element/C-repeat) motifs. These TFs induce expression of SOD, CAT, and
other redox-related genes, thereby increasing oxidative stress tolerance (Agarwal et al., 2006; Singh
and Laxmi, 2020; Zhao et al., 2023). CBF transcription factors, often overlapping with DREB, regulate
salt-inducible genes, including those related to ROS detoxification and osmotic adjustment, such as
APX and peroxiredoxins (Zhao et al., 2023). bZIP (Basic Leucine Zipper) family, especially the ABA-
responsive subfamily (e.g., ABF/AREB), modulates the expression of antioxidant and stress-
responsive genes under salt-induced abscisic acid (ABA) signaling (Fujita et al., 2005; Li et al., 2022;
Gupta et al., 2024). For instance, AREB1 is known to activate CAT and DHAR (dehydroascorbate re-
ductase) expression.

The role of antioxidants is manifested by studying antioxidant mutants. These transgenic plants
showed higher photosynthesis rate, better root/shoot biomass, and reduced electrolyte leakage and
lipid peroxidation (Tavleeva et al., 2022; Sharma et al., 2023). For instance, transgenic rice overex-
pressing the katE gene of E. coli showed 150% higher expression of catalase (Moriwaki et al., 2008).
These transgenic rice plants under salinity stress showed remarkable tolerance and survived success-
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fully under 50-250 mM NaCl treatments, at which wild-type plants could not survive (Moriwaki et al.,
2008; Prodhan et al., 2008). Similarly, other studies showing higher expressions of catalase in rice
(Nagamiya et al., 2007) and Cynobacterium synechococcus sp. (Kaku et al., 2000) showed improved
growth and salinity tolerance (Zhang et al., 2021). The upregulation of these transcription factors
under salt stress enhances the plant's ROS-scavenging capacity, maintaining cellular redox homeosta-
sis and protecting against oxidative damage (Singh et al., 2022). Higher expression of superoxide
dismutase showed enhanced salinity tolerance. For instance, Cu/Zn SOD overexpression in Nicotiana
tabacum (Lee et al., 2013) and Oryza sativa (Prashanth et al., 2008) has shown improved germination
rate and chloroplast integrity under salinity and oxidative stress (Wang et al., 2022). The other
isoforms of SOD were less studied, but their overexpression, such as Fe-SOD (Van Camp et al., 1996)
and Mn-SOD (Wang et al., 2004), also improved salinity tolerance in target plants. Similarly, Ara-
bidopsis plants overexpressing peroxisomal APX from the Puccinellia tenuiflora showed high salinity
tolerance (Guan et al., 2015). APX transgenes under 150 and 175 mM NaCl showed improved chloro-
phyll content, less lipid peroxidation, and less H,0, content under exogenous application of H,0,.
Overexpression of cytosolic AtAPX1 increased catalase and GPX activities, improving salinity toler-
ance in Indian mustard by reducing ROS and membrane damage (Saxena et al., 2020; Ali et al., 2023).

Additionally, transgenic antioxidant lines exhibited several effects that enhanced salinity toler-
ance. Notably, many transgenic lines demonstrated 20-40% increases in photosynthetic rate, im-
proved chlorophyll retention, and increased shoot/root biomass under salt stress compared to the
wild type (Hasanuzzaman et al., 2021; Rajput et al., 2021; Cao et al., 2023). Transgenics often had 25-
35% greater root/shoot dry weight and plant height due to improved stress resilience and growth
maintenance (Hasanuzzaman et al., 2021). Lower electrolyte leakage and malondialdehyde contents
were consistently observed, indicating reduced lipid peroxidation and membrane damage (Saxena et
al., 2020). Some studies reported up to 50% higher survival, though exact figures vary depending on
enzyme, genotype, and NaCl concentration (Hasanuzzaman et al., 2021).

3.b. Non-enzymatic systems

Plants also utilize non-enzymatic antioxidants to scavenge ROS and protect cellular components.
Important non-enzymatic antioxidants include ascorbic acid, tocopherols, carotenoids, flavonoids,
proline, and polyamines (Ashraf, 2009). Ascorbate (vitamin C) is a potent antioxidant that directly
reacts with ROS, neutralizing them and preventing oxidative damage. Ascorbate also participates in
the ascorbate-glutathione cycle, which is essential for detoxifying H,0, (Foyer and Kunert, 2024).
Overexpression of ascorbic acid in transgenic potato showed improved tolerance to oxidative stress
under salinity stress by overproducing glutathione and activating glyoxalase enzyme (Upadhyaya et
al., 2011). Under salinity stress, plants accumulate proline, a multi-functional amino acid that acts as
an osmoprotectant and antioxidant (Targino et al., 2025). Proline helps maintain cell turgor and pro-
tects cellular structures from high salt concentrations (Koc et al., 2024). It also scavenges ROS
(Zulfigar and Ashraf, 2023), stabilizes the quaternary structures of proteins and membranes (Wright
et al., 2025), and contributes to osmotic adjustment (Zuo et al., 2022). Proline accumulation is regu-
lated by stress-responsive genes such as P5CS (A'-pyrroline-5-carboxylate synthetase), ProDH, and
P5CR (pyrroline-5-carboxylate reductase), which are transcriptionally modulated under salt stress
(Tavakoli et al., 2016). Overexpression of P5CS has been associated with improved salinity tolerance
in several transgenic plants, including Arabidopsis, tobacco, sugarcane, cotton, and rice (Hmida-
Sayari et al., 2005; Guerzoni et al., 2014; Sellamuthu et al., 2024).

Polyamines (PAs), a group of low-molecular-weight aliphatic amines, including putrescine (Put),
spermidine (Spd), and spermine (Spm), have been shown to have protective roles in plants under salt
stress. They help stabilize membranes, scavenge free radicals, and modulate ion channel activity. One
of the primary effects of salinity stress is ion imbalance (i.e., the accumulation of Na* ions and the
depletion of K* ions). At the same time, PAs help maintain ion homeostasis by regulating the activity
of ion transporters such as H*-ATPases and Na*/H* antiporters (Xu et al., 2024). Exogenous applica-
tion of Spd improved K*/Na* ratio in wheat and rice under salt stress by modulating the expression of
ion transporter genes (Paul and Roychoudhury, 2017; Shokri et al., 2024). PAs contribute to osmotic
adjustment by stabilizing membrane structures and macromolecules under osmotic stress. Studies
have shown that Spm and Spd reduce H,0, and malondialdehyde (MDA) levels in salt-stressed
plants, indicating reduced oxidative damage (Nahar et al., 2016; Zhou et al., 2019). Polyamines as
signaling molecules regulate the expression of stress-responsive genes, including those involved in
ABA signaling, ion transport, and ROS detoxification. Transcriptome studies have revealed that exog-
enous PAs modulate transcription factors such as DREB, NAC, and WRKY under salinity stress
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(Takahashi and Kakehi, 2010; Paul and Roychoudhury, 2017). Rice mutant overexpressing the antho-
cyanidin synthase gene, a gene involved in the flavonoid pathway, increased antioxidative potential
(Reddy et al., 2007).

4. Hormonal regulation

Plants adapt to salinity stress through hormonal regulation in a complex process. Phytohor-
mones have a crucial role in salinity adaptation through modulating growth, development, and
stress-responsive processes in tissue-specific and stage-dependent manners. These hormones act as
signaling molecules, influencing plant responses to salinity at morphological, physiological, biochem-
ical, and molecular levels (Ghosh et al., 2025; Mahajan, 2025; Waheed et al., 2025).

Abscisic acid (ABA) is a central hormone in salinity stress response. Under salinity, ABA regulates
stomatal closure to reduce water loss and adjusts root architecture for water use (Yun et al., 2024).
ABA can influence ion transport through ABI2 and PYL5, affecting calcium cascades and potassium
retention. ABA can also regulate the production of ROS by acting through OST1 and ABI4 to influence
RBOHF and RBOHD (Yun et al., 2024). During salinity stress, ABA synthesis is upregulated via key bio-
synthetic enzymes such as 9-cis-epoxycarotenoid dioxygenase (NCED) (Woo et al., 2011; Molinari et
al., 2020). NCED overexpression enhanced dehydration stress resilience in AtNCED3-transgenics
plants, showing improved root growth and photosynthetic efficiency. The mutants with low AtNCED3
were hypersensitive to salinity stress (Woo et al., 2011).

Ethylene (ET) plays a dual role in salinity tolerance as its effect can be both protective and dele-
terious. Its production is induced by salt stress and ET signaling pathways, including receptors like
ERS1 and ETR1 (Wang et al., 2025). Mutants deficient in these signaling actors display heightened
salt sensitivity, highlighting ethylene's protective role (Wang et al., 2008; Wilson et al., 2014). Eth-
ylene often interacts with GA biosynthesis pathways, enabling morphological responses such as
shoot elongation under stress conditions. The role of ET signaling and its temporal regulation in salt
adaptation mechanisms is evidenced by recent transcriptomic analyses in the semi-halophyte (Mes-
embryanthemum crystallinum), which reveal that extended exposure to 0.4 M NaCl alters the circa-
dian expression rhythms of important ethylene biosynthesis genes, ACS6 and ACO1 (Gieniec et al.,
2024). Increased ET production in polyploid plants has been shown to enhance ROS scavenging by
activating the transcription of genes involved in antioxidant defense (Song et al., 2025).

Salicylic acid (SA) and jasmonic acid (JA) predominantly contribute to salinity stress tolerance,
with nuanced context-specific roles (Jayakannan et al., 2015; Farhangi-Abriz and Ghassemi-Golezani,
2018; Atta et al., 2023). JA is involved in guard cell and aquaporin regulation (Luo et al., 2019). It also
regulates ROS levels by acting through antioxidant enzymes and MYC2 to influence VTC/GSH, in-
volved in both ROS generation and elimination (Yuan et al., 2017; Song et al., 2021). SA contributes
to maintaining redox homeostasis and osmoprotection under saline conditions (Atta et al., 2023; Ai-
zaz et al., 2024). It acts through NPR1 to regulate Na* flux in plant cells, contributing to overall ion
balance (Yun et al., 2024). SA also influences key antioxidant enzymes in the ROS-elimination process
(Karimi et al., 2025; Song et al., 2025). Many recent studies have reported that the foliar, soil, and
seed priming treatments with SA impart salinity tolerance via improvement in pigment biosynthesis,
K*/Na® ratio, antioxidative capacity, improved PSlI light utilization efficiency, and osmotic adjustment
(Karimi et al., 2025; Ma et al., 2025; Song et al., 2025).

Gibberellins (GA) levels generally decline under salt stress, an effect mediated in part by ABA-
related DELLA protein accumulation; mutants lacking DELLAs show heightened salt sensitivity, under-
scoring DELLA’s protective function (Waadt et al., 2022). Whereas, the cytokinins (CKs) signaling is
downregulated under salt, potentiating enhanced ABA responsiveness, particularly via interplays in-
volving SnRK2 kinases and type-A/B ARR transcription factors (Waadt et al., 2022). CKs initiate a sig-
naling cascade involving ARR1/12, which affects HKT1, leading to Na* accumulation in plant cells. CKs
can also act on ABI4, impacting other components in the ion-transport network (Yun et al., 2024).
The brassinosteroids (BRs) contribute to stress resilience, notably in mitigating chlorophyll degrada-
tion and improving growth under salinity as observed in BR-treated rice seeds. Recent studies on BR
showed that the exogenous application of EBR (24-epibrassinolide) significantly alleviated salt-
induced damage in pepper and tea (Jin et al., 2024; Zhang et al., 2024). In pepper seedlings, foliar
EBR treatment boosts photosynthetic efficiency, osmolyte production (including proline, soluble sug-
ars, and glycine betaine). It enhances antioxidant defenses, while reducing ROS and Na* accumula-
tion and upregulating stress-responsive genes like HKT1, NHX6, and SOS1 (Jin et al., 2024). Similarly,
in tea plants, BR application mitigates salt-induced lipid peroxidation, elevates levels of photosyn-
thetic pigments, soluble proteins, proline, and flavonoids, and strengthens antioxidant enzyme activi-
ties (Zhang et al., 2024). At the molecular level, BR signaling components such as AtBRI1, BIN2, and
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BES1 are upregulated under salt stress, underscoring their involvement in stress adaptation networks
(Ahmar et al., 2025).

Auxins, while having a major role in growth regulation, also play a significant role in salinity
stress adaptation by interacting with other hormones, especially through modulating root develop-
ment and gravitropic responses (Ghosh et al., 2025). Auxin signaling is often suppressed in root re-
gions under salinity stress, which hinders the development of lateral roots. However, plants compen-
sate for impaired auxin via the transcription factor LBD16, which can drive lateral root formation
(Zzhang et al., 2023). Moreover, ZAT6 acts as an alternative upstream activator of LBD16 under saline
conditions, ensuring lateral root development (Zhang et al., 2024). It acts through auxin response
factor 2 (ARF2) to influence high-affinity K" transporter gene 5 (HAK5), which is involved in potassium
uptake (Zhao et al., 2016; Verma et al., 2022), and guard cell outward rectifying channel (GORK), re-
sponsible for potassium efflux (Kopic, 2024). This fine-tunes potassium levels in plant cells by regulat-
ing both uptake and efflux mechanisms. Auxins can also modulate ROS production through ARF5-
RSL4, influencing RBOHC/J (Mangano et al., 2017; Yun et al., 2024).

Overall, hormonal regulation is a key adaptation mechanism in plants under salinity stress, in-
volving a complex interplay of ABA, auxins, cytokinins, SA, and JA to regulate ion transport, ROS ho-
meostasis, and stress-related gene expression (Waheed et al., 2024). Furthermore, no hormone acts
in isolation; rather, hormonal crosstalk forms a regulatory web that enables plants to fine-tune re-
sponses. For instance, the ABA/GA/CK triangle coordinates stomatal behavior, growth modulation,
and osmotic homeostasis (Waadt et al., 2022). Similarly, SA and JA interplay with redox signaling and
antioxidant defenses (He, 2025). Ghosh et al. (2025) highlight how, under saline conditions, multiple
hormones, including ABA, ethylene, jasmonates, GAs, SA, BRs, melatonin, and auxins, coordinate
during seed germination and early seedling development. These hormones integrate signals that de-
termine whether growth proceeds or is arrested during salt stress. In conclusion, hormones formu-
late a dynamic and context-sensitive network to regulate salinity tolerance where ABA functions as a
master stress regulator, ET and SA/JA reinforce adaptive responses, and GA, CK, BRs, and auxins fine-
tune growth and development.

Morphological adaptations

Other than the physiological adaptations, the structural adaptations often contribute to salinity
stress tolerance. Plants develop deeper roots to grow away from high salinity and to forage for water
and nutrients (Zou et al., 2021). Moreover, the deposition of suberin restricts salt entry into the roots
(de Silva et al., 2021). For example, in halophytes, the development of endodermal barriers in the
vascular system restricts salt movement (Flowers et al., 2010; Bose et al., 2023). At the shoot level,
the reduction in leaf size and leaf area under salinity stress lowers transpiration (Parida and Das,
2005). Leaves of halophytes are succulent and store more water and accumulate more salt within
vacuoles (Rozema and Schat, 2013; Flowers and Colmer, 2015). An increased trichome density has
also been reported among plants under salinity stress (Shabala and Mackay, 2011; Shabala et al.,
2022). Both Atriplex and Tamarix possess salt glands that release salt as crystals (Yuan et al., 2016).

Conclusions and Prospects

The current review mainly highlights some key physio-biochemical and molecular traits primari-
ly involved in plant salinity tolerance, including Na*-exclusion, xylem loading and Na'-vacuolar se-
guestration, osmoregulation, antioxidants, and hormonal regulation. The roles of various antiporters
HKT1, NHX1, NHX2, and SOS1 are therefore imperative for ion homeostasis, whereas organic osmo-
lytes (proline, glycine betaine, sugars, polyols) and inorganic ions (Na*, K*, Ca%*) participate in osmo-
regulation. Both enzymatic and non-antioxidant compounds help mitigate oxidative stress, and hor-
mones facilitate the regulation of key physiological processes. Based on this information, future stud-
ies should involve screening crop species and wild relatives for superior combinations of these traits
to enhance salt tolerance. By using CRISPR-Cas9 and other advanced gene editing approaches,
breeding programs could focus on the development of genotypes expressing HKTI, SOS1, and NHX,
thereby exhibiting better ion homeostasis under salt stress. Lastly, high-throughput plant phenotyp-
ing approaches could help in identifying salt-tolerant genotypes.
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