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Abstract

Salt stress is a significant environmental issue that harmfully affects plant
growth and metabolism. However, plants tend to adapt to salt stress by
regulating their biochemical and physiological attributes. Physio-biochemical
responses to stress conditions of natural habitats remain unclear in Prosopis
cineraria. This study evaluated the eco-physiological and biochemical adaptive
strategies in P. cineraria growing under different edaphic habitats of the
Cholistan Desert. Three edaphic habitats (Sand dune = SD, sandy plain = SP,
saline area = SA) of the Cholistan desert were selected, each with three sub-
sites as replicates. For the ecological study, five randomly positioned 10 m x 10
m quadrats were taken at each selected site. Physicochemical results revealed
that at SD, EC was 9.4 dS m™", pH 7.5, and organic matter (OM) 0.78%. At SP, EC
increased to 157.7%, pH to 9.33%, and OM to 20%. The soil Na® level at SD was
1650.8 mg L', but at SA, it was 200.8% compared to that of SD. The
physiological attributes of the plant were significantly modified in a high-saline
area, as chlorophyll a and b declined considerably by 34.26% and 54.32%,
respectively, at SA compared to those of SD. Total soluble proteins, free amino
acids, soluble sugars, proline, and root tissue contents of Na*, K*, Ca**, and CI
were considerably higher at SA. In wild populations, these physiological
changes appeared to be crucial for sustainable survival in the arid, saline desert
environment. Prosopis cineraria was identified in all edaphic habitats and
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showed ecological dominance at the saline area in the Cholistan Desert, pigments

indicating its particular adaptability to the salty environment.

Introduction

The Cholistan desert is situated in the southern region of Punjab province, Pakistan, between
latitudes 27° 42° and 29° 45° North and longitudes 69° 52° and 75° 24° East. The desert spreads
roughly 26,000 km? with an extent of 480 km and a breadth of 32-192 km (Usman et al., 2024). The
Cholistan desert has an arid environment with limited rainfall, high temperatures, low humidity, and
strong winds throughout the summer months. The average wintertime temperature is 6.60 °C
(December-January), whereas the average summer season temperature is 46.40 °C in June-July
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(Wariss et al., 2021). Cholistan desert's vegetation comprises xerophytic plants adapted to a variety
of harsh environmental extremes of soil moisture and temperature conditions (Rehman et al., 2024).

Plants have evolved unique structural and physiological adaptations that are beneficial for their
survival and growth. Xerophytes are suitable for arid regions that have been affected by drought,
whereas halophytes can grow on salt-affected lands where glycophytes cannot grow (Javed et al.,
2022). For example, xerophytes have thick cuticles, slow stomatal regulation, and water-conserving
tissues that restrict water loss and ensure survival during droughts (Madhavan et al., 2024).
Halophytes have salt glands, epidermal thickening, and vacuolar salt compartmentalization to thrive
at high salt concentrations (Agarwal et al., 2020). For example, in an earlier-published study, Nadal et
al. (2020) reported that both drought and salt stress delayed plant leaf growth, decreased leaf
number, and reduced area in Arbutus unedo. When plants adjust to water stress, they develop a
number of defensive mechanisms to prevent harm to their photosynthetic organs and sustain
photosynthesis (Yang et al., 2020; Sharma et al., 2020). Moderate water stress allows most plants to
regulate their stomata and transpiration, directly control the water potential of their leaves, and self-
repair once their water supply is restored. Some plants may even boost photosynthesis in response
to moderate water stress (Elnajar et al., 2024).

The sensitivity and adaptation mechanisms of vegetations to salt stress need to be explored
because of their significant influence on plants (Javed et al., 2024). Salt-tolerant plant species often
exhibit increased sclerification, which helps reduce water loss (Keshavarzi, 2020). It has been noted
that the availability of nutrients in soil, such as calcium (Ca*), inhibits the sodium (Na*) uptake by
root cells under salt stress (Javed et al., 2022). Saline stress decreases photosynthetic pigments and
alters organic osmosis (Wu et al., 2022), including the perturbation of several other mechanisms.

Habitat degradation is caused by both human activities, like deforestation, and natural
occurrences like prolonged droughts (Waheed et al., 2022). Learning the ecology, causes of
fragmentation, and distribution of flora is essential to the preservation of species and ecosystems.
Understanding the reaction to drought is crucial for preservation in the Cholistan desert. A study on
Prosopis cineraria adaptation to drought can enhance restoration efforts (Abbas et al., 2023).
Prosopis cineraria, a multipurpose tree found in arid and semi-arid locations, has high potential due
to its phytochemical composition and various bioactive qualities (Awasthi et al., 2024). The plant's
antioxidative and antibacterial properties make it valuable in traditional medicine and current
therapies (Awasthi et al., 2024). The current study proposes to describe physicochemical
characteristics of soil and physiological parameters that are linked to stress tolerance mechanisms to
uncover the adaptive strategies of P. cineraria. This can be helpful for the future to identify potential
structural traits related to abiotic stresses, such as high temperature and saline conditions, of the
Cholistan desert. These discoveries are essential for environmentalists working to preserve the
region's flora and prevent desertification. The study hypothesized that P. cineraria could withstand
stress and desert regions by altering its physiological attributes. This research intends to establish a
systematic foundation for the conservation, restoration, and study of P. cineraria, a robust stress-
tolerant species. The primary aim was also to gain a deeper understanding of xerophytic conditions
and abiotic stress tolerance mechanisms in the resilient plant P. cineraria of the Cholistan desert, in
response to growing concerns about climate change.

Materials and Methods

Study sites

The current investigation was conducted in the Cholistan desert; study sites were selected
following Arshad and Rao (1995) classification of the Cholistan desert, which was sand dunes (SD),
sandy plains (SP), and compact soil with gravel and saline areas (SA). For the present study, three
sites as replicates in each distinct habitat were selected based on classification, and 1 km? area was
selected for each study site, i.e., Chowki border (29.0067 N, 72.6705 E), Bariar Wali (28.9532 N,
72.5798 E), and Jattan Wali (28.9256 N, 72.4707 E); all these sites have sand dunes (SD). The sandy
plains (SP) were found at Khair Sur (29.0361 N, 72.4192 E), Lani Wala (29.0584 N, 72.6952 E), and
Kamal Wali (28.9851 N, 72.4219 E). However, saline areas (SA) were recorded at Loosiala (29.0000 N,
71.7094 E), Wakran (28.9665 N, 71.6948 E), and Jessa (28.9460 N, 71.6516 E) (Figure 1).
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Figure 1: The satellite map shows three distinct research sites (Sandy dunes, Sandy plains, and Sandy region)
and their subsites, as replicated according to the edaphic environment of the Cholistan desert. The location
map was downloaded or marked with Google Earth (www.google.com/earth).

Soil physicochemical analysis

Soil sub-samples (from a depth of 0-15 cm) were taken from each selected site along an S-
shaped transect (Peng et al., 2013). Each site's soil samples were combined and mixed into a 1 kg
sample. Soil texture and moisture were assessed using the procedures described in the AOAC (1984).
A Consort-K520 digital conductivity meter was used to test the electrical conductivity of the soil
samples. Soil Na and K were determined using a flame photometer (Corning M-410, UK), while soil
Cl- contents were analyzed by a digital chloride ion meter (Jenway, PCLM). Phosphorus (P) was
guantified using the spectrophotometric method of Olsen (1954).

Vegetation sampling

For obtaining quantitative data regarding the structure and organization of plant communities,
the vegetation was investigated using the quick and widely used quadrat method (Pound and
Clements, 1898). At each study site, 5 randomly placed quadrats (10 m x 10 m) were sampled for a
guantitative assessment of phytosociological variables, such as frequency, density, and cover
(Raunkiaer, 1934).

Frequency

It is a measure of the probability of finding species in a quadrat. The number of each species is
not counted; just their existence or absence in each quadrat is recorded. The frequency was
calculated within the quadrats based on the presence or absence of each particular species.

No.of quadrats where a species occurs
Total number of quadrats

Frequency =

Density

This parameter relates to count, in which all plants of a particular species are counted in each
guadrat. The sum of individuals of each species was counted for the total area sampled. The density
formula is as follows:

Number of plants of a specific species
Total area sampled

Density =

Cover

It is a proportion of the covered area of plant species and the total area sampled. It was
calculated by the following formula:
Total area covered by a species

Cover =
Total area sampled

Importance value index (IVI)

Because frequency, density, and cover data do not provide a clear picture of dominant and rare
plant species in heterogeneous plant communities, importance values for individual species were
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calculated. Later, relative phytoecological attributes such as percent relative density, percent relative
cover, and percent relative frequency were calculated as given in the following equation:

IVl = R.density + R.cover + R. frequency

Shannon-Wiener’s biodiversity index (H’)

It is a well-known diversity index in the ecological field. Claude Shannon was the first to suggest

a method for quantifying the entropy of text strings using the following formula (Shannon, 1948):
H' = =Y (Piln Pi)

> = Summation sign
Pi = ni/N = The proportion of individuals from each species among the overall number of individuals
in the sample.
ni = Importance value of each species
N = Total of importance values
In Pi = Natural logarithm of Pi (base n)

Species richness
Species richness was worked out following Margalef (1958):

d =(—-1)/logN
S = Number of species
N = Number of total individuals

Species evenness

It refers to how closely related each plant species is in an ecosystem. It was estimated following
Pielou (1966):
e = H /log$S
H’ = Shannon index
S = Number of species

Physiological analysis

Physiological assessment of the root and leaf samples collected from different sites was carried
out using conventional protocols for the parameters listed below. All different types of plant samples
were properly dried, ground in an electric grinder, and acid-digested. A flame photometer (Jenway,
PFP-7) was employed to quantify plant tissue K, Na, and Ca®* concentrations. Chloride
concentrations were measured using a Jenway PCLM 3 chloride meter. The Aron’s (1949) method
was used to quantify chlorophyll (a and b) and carotenoids. For pigment analysis, sample extracts
were combined with an 80% acetone solution, filtered, and the absorbance was measured at three
different wavelengths (663, 645, and 480 nm) using a spectrophotometer. The relevant equations for
chlorophyll a, chlorophyll b, and carotenoids are shown below:

Chlorophyll a (mg/g FW) = {12.7 (OD663 — 2.69 (0OD645) x V / 1000 x W}
Chlorophyll b (mg/g FW) = {12.9 (OD645 — 4.68 (OD663) x V / 1000 x W}
Total chlorophyll (mg/g FW) = [20.2 (OD645 — 8.02 (OD663) x V / 1000 x W]

OD = Optical density

V = Volume of sample

W = Fresh weight of sample

Carotenoids (mg/g FW) = OD480 + (0.114 x OD663) (0.638 x OD645)

Total free amino acids were estimated using Hamilton’s method (1943), and Bradford's method
(1976) was used to assess the total soluble proteins. Plant tissue proline levels were determined as
described elsewhere (Bates et al., 1973). The total soluble sugars were estimated using the technique
described by Kochhar (2006). An improved Folin-Ciocalteu technique was employed to determine the
total phenolic content. The total quantity of flavonoids was measured using the aluminum chloride
colorimetric test, and H,0, was estimated using the protocol of Velikova et al. (2000).
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Statistical analysis of data

Analyses of variance (ANOVA) of all physiological, morphological, and ecological data were
worked out using the computer software Statistix version 8.0. The mean values were compared with
the least significant difference (LSD) at P < 5%, and other qualities were correlated with one another
using the Pearson correlation. The spreadsheet program Microsoft Excel was used to handle and
present data using bar graphs.

Results

Soil physicochemical characteristics

Soil characteristics of the selected study sites are presented in Table 1. The electrical
conductivity (EC) was 9.4 dS m™ and pH 7.5 with 0.80% OM at SD that rose at SP as the EC, pH, and
organic matter (OM) were recorded as 24.23 dS m™ 8.2, and 0.92%, respectively. Soil Na* contents
were recorded as 1650.8 mg L™ at SD, which rose to 4967.1 mg L™ at SA. The OM at SA was recorded
as 0.78%, which was much lower than that of the other two sites. Soil K" was much lower at SA than
at the other study sites. Soil Cl" contents were also significantly higher at SA than at the other sites.
Available phosphorus was highest at SP of all sites (Table 1).

Table 1: Soil physicochemical attributes of the distinct edaphic environments of the Cholistan desert, i.e.,
Sand dunes (SD), Sandy plains (SP), Saline area (SA).

Soil Characteristics (Z?;;d dunes (S::)dy plains Saline area (SA) I}',S:O_m
EC (dS mil) ] 9.4c 24.23 b 4143 a 0.116
Na® content (mg L™) 1650.8 c 3391.2b 4967.1a 2.22
Cl" content (mg L™) 750.0 c 1432.1b 2431.6 a 1.15
pH 75b 8.2a 8.4a 0.539
Organic matter (%) 0.80b 0.96 a 0.78 b 0.053
Available P (mg L™ 1.57b 2.26a 1.52b 0.178
Available K (mg L™) 197.5a 174.44 b 142.67 ¢ 1.788
Soil moisture (%) 29.72 b 36.2 a 28.3cC 0.539

The mean values following different letters for each attribute in each row differ significantly at P < 0.01.
Ecological characteristics

There was no significant change detected in the relative density and relative frequency of
Prosopis cineraria at the sand dunes and sandy plains. However, the saline region showed a
significant (P < 0.05) rise in this parameter when compared to the other edaphic sites in the
Cholistan desert. The relative cover was significantly increased by 661.8% at the sandy plains as
compared to that on the sand dunes, and then again significantly decreased by 18.29% at the saline
area. The importance value index was detected to rise significantly at the sandy plains by 396.39%
and saline area by 422.44% with respect to the sand dunes, but there was no significant difference in
the samples collected from the sandy plains and saline area. Similar findings were found for the
Shannon index and species richness of the chosen habitats; both were found to be at their highest at
the sand dunes, but greatly decreased at the sandy plain’s environment, and then significantly
increased (P < 0.05) at the saline part of the selected habitat. Species evenness of the selected
habitats decreased significantly at the sandy plains by 51.06% over that at the sand dunes, and then
it increased from the sandy plains to the saline area. Prosopis cineraria showed a significantly higher
frequency and density in the saline area as compared to that at the sand dunes.

Table 2: Ecological characteristics of the P. cineraria from three different edaphic habitats of the Cholistan
desert, i.e., Sand dunes (SD), Sandy plains (SP), and Saline area (SA)

Ecological characteristics Sand dunes (SD) Sandy plains (SP) Saline area (SA) LSD P<0.01
Relative density 0.99b 1.20b 6.79 a 0.26
Relative cover 4.77 ¢ 36.34a 29.69b 5.16
Relative frequency 2.56b 3.81b 7.04 a 1.34
Importance value index 8.33b 41.35a 43.52 a 491
Shannon index 3.82a 1.80c 2.50b 0.12
Species richness 224.89 b 193.87 ¢ 923 a 2.82
Species evenness 141a 0.69c 124 b 0.02

The mean values following different letters for each attribute in each row differ significantly at P < 0.01.
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Biochemical characteristics of P. cineraria populations

Salinity stress caused a significant decrease in green pigments (Chl a or b) and carotenoids of P.
cineraria (Figure 2). These metabolites showed a consistent and substantial decline as the salinity
concentration of the chosen locations was increased, and sand dunes produced greater levels of
these compounds compared to the other habitats. Chlorophyll a and b decreased significantly and
progressively by 34.26% and 54.32%, respectively, at SA, compared with those at SD. Chlorophyll b
decreased by 41.97% at SP, and a gradual decline by 30.76% was observed in carotenoids at SP as
compared to that at SD (Figure 2).
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Figure 2: Leaf photosynthetic pigments (Chl a, b, and carotenoids) of P. cineraria from three diverse edaphic
habitats of the Cholistan desert, i.e., Sand dunes (SD), Sandy plains (SP), and Saline area (SA)

Total free amino acids (TFAA), total soluble sugars (TSP), and proline of Prosopis cineraria from
different edaphic habitats were improved gradually and significantly with a rise in salt content of the
study sites, i.e., from SD to SA. Total free amino acids and total soluble sugars (TSS) increased by
42.27% and 22.23%, respectively, at SA as compared to those at SD. Proline was increased
significantly by 101.47% from SD to SP, but no significant difference was observed between SP and SA
in terms of this biochemical. Total soluble proteins did not change significantly across the
populations from different edaphic environments (Figure 3).
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Figure 3: Leaf organic osmotica of P. cineraria from three distinct edaphic habitats (i.e., Sand dunes (SD),
Sandy plains (SP), and Saline area (SA) of the Cholistan desert
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Flavonoids, phenolics, and hydrogen peroxide were noted to be maximum at the saline area,
and there was a significant (P < 0.05) increase in all these parameters in the natural populations of all
three edaphic habitats. Flavonoids showed a significant increase by 14.08% from those at SD to SP
and from SP to SA of 44.85%. Phenolics showed a non-significant difference among the three
habitats of the Cholistan desert (Figure 4).

Tissue ionic contents

There was a consistent and significant (P < 0.05) increase in the root tissue Na* by 52.73%, K" by
100%, Ca** by 36.66%, and CI" by 114.69% in plant specimens collected from SP as compared to the
site SD of the Cholistan desert (Figure 5). All these root ionic contents were recorded as the highest
at the SA. Moreover, a consistent and significant rise in leaf tissue Na* by 95.80%, K* by 107.46%, Ca®
by 60.24%, and CI" contents by 162% were observed in plant samples together from SP, as compared
to those at SD of the Cholistan desert (Figures 5 & 6).
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Figure 4: Leaf biochemical attributes, i.e., phenolics, flavonoids, and hydrogen peroxide of P. cineraria from
three study locations of Cholistan desert, i.e., Sand dunes (SD), Sandy plains (SP), and Saline area (SA)
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Figure 5: Root tissue ionic contents of P. cineraria from three different study sites of the Cholistan desert,

i.e., Sand dunes (SD), Sandy plains (SP), Saline area (SA)
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Figure 6: Leaf tissue ionic contents of P. cineraria from three different study sites of the Cholistan desert,
i.e., Sand dunes (SD), Sandy plains (SP), Saline area (SA)

Discussion

The Prosopis cineraria plant is a perennial leguminous plant grown in the deserts of Pakistan.
Aside from its diverse applications as fodder, timber, and traditional medicine, it is also an important
key plant for the desert environment. It is very resistant to abiotic conditions, such as drought, heat,
and nutrient deprivation (Dhiman et al., 2025). This species is resilient to various drought and salt
conditions. The plant's capacity to colonize new places in the Cholistan desert demonstrates its
environmental versatility and contributes to the species' existing intraspecific diversity.

Environmental changes are altering biodiversity assembly patterns and processes, highlighting
concerns about their influence on survival (Magurran et al., 2018). Understanding the abiotic
mechanisms that influence species diversity across communities is vital for monitoring ecological
balance and structural development under climate change, resulting in effective conservation and
management approaches (Haqg et al.,, 2023). Soil factors, including nutrient availability, pollution,
salinity, and pH, have a vital role in plant growth, survival, biodiversity, and productivity (Yadav et al.,
2021). Soil qualities have a bigger impact on species distribution at the local scale than climatic
factors due to their spatial variability, which influences community assembly and turnover (Haq et
al., 2024). The current investigation revealed the distribution pattern of P. cineraria under diverse
edaphic conditions, as relative cover increased by 661.8% in sandy plains compared to sand dunes,
but dropped by 18.29% in the saline region. In comparison to sand dunes, the importance value
index was shown to rise considerably at the sandy plains by 396.39% and in saline areas by 422.44%
(Table 2). Several studies have explored how climate and soil conditions influence species
distribution, diversity, and community structure (Maia et al., 2020).

Plants display diversity in their morphology (Bhatt et al., 2020), physiology, and genetics
(Salgotra et al., 2023). Prosopis cineraria populations have diverse leaf sizes, shapes, and colors
(Koteyeva et al., 2023). This plant has a remarkable physiological resistance to salt stress, maintaining
cellular homeostasis and photosynthetic performance even under extreme drought conditions and
salty environments (Ma et al., 2022). Understanding stress tolerance in plants like P. cineraria is
crucial owing to global warming and desertification. The capacity of plants to adapt to abiotic
stresses is influenced by several mechanisms at several levels, which lead to enhanced stomatal
function, water content, osmotic adjustment, root systems, and leaf structure (llyas et al., 2021).

Abiotic stress frequently causes a drop in chlorophyll content, which has a significant influence
on leaf photosynthetic potential. Stress circumstances may hinder chlorophyll production and
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accelerate breakdown, resulting in a decrease in this vital pigment (Athar et al., 2022). Chlorophyll is
the major molecule engaged in photosynthesis’s energy conversion processes, and it plays an
important part in the absorption, transmission, and dispersion of light energy, all of which are
required for plant growth (Yang et al., 2023). Plants employ a number of defensive mechanisms to
shield their photosynthetic components from harm as they adjust to water stress in order to sustain
photosynthesis (Yang et al., 2020). Most plants respond to mild water stress by influencing stomata
and transpiration, rapidly regulating leaf water potential, and self-repairing after restoring to normal
water supply; some plants even increase photosynthesis (Wu et al., 2022). Photosynthetic pigments
contain carotenoids, which not only collect light energy but also prevent damage to photosynthetic
organs. Plant chlorophyll levels are determined by the balance of synthesis and breakdown (Hu et al.,
2023). This study showed that the population of P. cineraria from the saline habitat had much lower
levels of Chl a and b as well as carotenoids than those of the populations from the other two
habitats. These findings are comparable to those of an earlier study with rice (Li et al., 2023),
wherein the authors observed a substantial decrease in the photosynthetic pigments under saline
stress.

Maintaining proper ionic balance is crucial for plant development and survival in saline settings
(Shahid et al., 2020). Generally, plants accumulate a substantial amount of Na* and CI" in their tissues
to a varying extent under saline environments. In the current study, the P. cineraria population
collected from the saline habitat had much greater Na* and CI" in its leaves and roots than found in
the other two populations. Working with Cymbopogon jwarancusa (Jones) Schult, Fatima et al.
(2021) have shown increased levels of Na* and ClI" as salinity stress of the root zone increased.
Likewise, Cui et al. (2025) have recently observed a sharp increase in tissue Na* content in Bermuda
grass (Cynodon dactylon) under saline stress. Surprisingly, K* and Ca®* contents in the leaves and
roots of the population from the saline habitat were also significantly higher than those of the
populations from the other two habitats. Since P. cineraria is known as a salt and drought tolerant
plant (Tiwari et al., 2025), so it is likely that it maintained high K/Na and Ca/Na ratios in its tissues, as
these ionic ratios are known to play a significant role in improving salt tolerance in most plants
(Munawar et al., 2021; Wang et al., 2022). Increased K" and Ca® concentrations in the stem and root
of some florae may help offset the negative effects of Na*, as already noted by Zhang et al. (2025). K*
and Ca”" deposits may play a significant role in osmotic control, allowing plants to better absorb
water in saline environments (Choudhary et al., 2023).

In the current study, soluble sugars, free amino acids, and free proline were considerably higher
in the P. cineraria population from the saline habitat than those of the populations from the other
two diverse habitats. Moreover, this population had also higher levels of soluble proteins, phenolics,
and flavonoids than the other populations. Santanoo et al. (2024) reported that wild plants
accumulate a variety of metabolic compounds that protect against abiotic stressors. For example,
proline is known to protect proteins from denaturation and regulate redox potential under salinity
stress (Tiwari, 2024). For example, in wheat plants, proline provided nitrogen and carbon for post-
salt stress recovery (Khalid et al., 2025). Phenolics remain an essential class of secondary metabolites
that serve critical physiological roles within the plant's life cycle (Scott and Crone, 2021). Under
abiotic stress circumstances, plants produce more phenolic chemicals, which contribute to their
antioxidant capacity (Xie et al., 2021). Salt-induced increase in phenolic acids and isoflavones in
Brussels sprouts rose by 10.91% and 19.14%, respectively (Xie et al., 2021). Similarly, Aegiceras
corniculatum demonstrated a higher content of polyphenols after growing under salt stress at 250
mM NaCl (Hassan et al., 2020). Moreover, salt stress raised the amounts of phenolic compounds and
total flavonoids in pepper plants (Kusvuran et al.,2021). All these findings support our current
investigation results (Figure 4). Although all such biomolecules are considered secondary
metabolites, they play a significant role in a myriad of metabolic processes within plants exposed to
extreme environments. The present study provides insight into the adaptability of Prosopis cineraria
populations to harsh saline conditions and their ecological diversity in the Cholistan desert. The
significant physio-biochemical variations between the groups show their unique adaptation
strategies, which are essential to their ability to survive in harsh environments. Moreover, several
edaphic factors impact plant species distribution and survival in saline environments. Identifying
stress-tolerant plants and understanding their adaptation processes allow us to create effective
approaches for repairing ruined ecosystems and enhancing sustainability in the environment.
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