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This study investigated the protective role of exogenous salicylic acid (SA) in
mitigating chromium (Cr) toxicity in oat (Avena sativa L.). A pot experiment was
conducted in a shade house using a factorial design with six treatment groups:
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Control (No Cr, No SA), CrCl; 2 mM, SA 0.5 mM, SA 2 mM, CrCl;2 mM + SA 0.5
mM, CrCl; 2 mM + SA 2.0 mM. Chromium stress significantly reduced plant
growth, yield, and anatomical parameters. Chromium treatment significantly
decreased the root-shoot ratio, while both concentrations of SA improved
growth considerably. The SA (2.0 mM) treatment proved to be most effective
in enhancing overall plant growth and grain yield of oat. Anatomical analysis
revealed that SA application mitigated the damage induced by Cr. Specifically,
the thickness and area of stem sclerenchyma were significantly increased by
1.3- and 1.5-fold, respectively, with the 2.0 mM SA treatment compared to
those in the control. Furthermore, SA improved the thickness of the leaf
midrib, metaxylem, and phloem, as well as the root epidermis, endodermis,
and phloem, particularly in the Cr + SA treatment. These anatomical changes
are crucial for water conservation and overall plant survival under heavy metal
stress. Our findings suggest that exogenous application of SA can effectively
alleviate Cr-induced stress, promoting the healthy development of oat
seedlings.
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Introduction

Heavy metal exposure to the environment has grown dramatically during the last century due
to industrial operations, home wastewater discharge, agricultural fertilizers, and improper home
solid waste disposal (Budi et al., 2022). Some heavy metals (HMs), such as arsenic and mercury,
among others, can selectively target proteins and enzymes to alter their activities and impede
cellular metabolism, which further affects the general development and yield of plants (Riyazuddin
et al., 2021). Higher level of heavy metals causes stunted growth, chlorosis, nutrient imbalance, and
alterations in the defense mechanisms of plants (Varma et al., 2021). The poisonous heavy metals
can have a major negative impact on a plant's physiological and metabolic processes, which can
ultimately cause health problems for humans and animals by entering the food chain (Amanullah et
al., 2023).

Of several heavy metals known in nature, lead, chromium, and cadmium are the most common
ones that cause toxicity (Balali-Mood et al., 2021). Plants' ability to eliminate or safely collect metal
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cations determines how they react to and tolerate heavy metals (HMs) (Thakur et al., 2022). It is well
known that the hazardous element chromium may seriously harm plants (Sharma et al., 2020).
Chromium is a dangerous element that adversely affects plant metabolic processes, obstructing crop
growth and yield, and lowering the quality of vegetables and grains (Wakeel et al., 2020). Plant
metabolism of antioxidants can be impacted by chromium. Plants that are exposed to chromium-
induced oxidative stress are driven to undergo lipid peroxidation, which severely damages the cell
membrane (lftikhar et al., 2025). Chromium can cause genotoxicity in many different plant species
(Wakeel et al., 2020). In agriculture, various techniques are employed to help plants adapt to biotic
and abiotic stressors, including those associated with metals. In recent years, consideration has been
given to seed priming and exogenous foliar application of suitable solutes such as sugar polyols,
amino acids, proline, and salicylic acid (Ellouzi et al., 2023). Salicylic acid (SA) is a member of a broad
class of plant phenolics from a chemical perspective, and it may be extracted from plants in both free
and conjugated forms (Maruri-Lépez et al., 2019).

Oat (Avena sativa) is a crop used as cereal fodder and is a biennial member of the Poaceae
family (Kim et al., 2021). It resembles barley in shape and has different varieties, such as black, red,
yellow, and white oats (Martin-Diana et al., 2021). Oats are grown on 3.52 thousand hectares of land
in Pakistan, mostly as a feed crop, yielding 264 tons of output annually, with 2.03 million hectares
contributed by the Punjab province, so more than 35% of the total area is used for fodder farming
(Ibrahim et al., 2020). Among grains produced worldwide, oats rank sixth, behind wheat, corn, rice,
barley, and sorghum (Mert, 2020). They are high in protein, fiber, vitamins, and minerals, and are
typically eaten as oatmeal (Paudel et al., 2021). Specifically, oats are considered high-value crops
because they have balanced levels of important amino acids like lysine, high levels of proteins and
lipids, and 2-6% of B-glucan (Nogala-Katucka et al., 2020).

Based on the earlier-mentioned reports, it was hypothesized that salicylic acid mitigates the Cr-
induced stress in A. sativa by altering anatomical structures and key physiological processes. Thus,
the current study was conducted with a primary objective that salicylic acid acts as a plant growth
regulator in alleviating Cr-induced stress in A. sativa by modulating structural features and
physiological processes.

Materials and Methods

Plant seeds and soil preparation

Certified A. sativa seeds were purchased from the Ayub Agricultural Research Institute,
Faisalabad, Pakistan. The soil was prepared by mixing sand, clay, and manure in a 1:2:1 ratio,
respectively, to form a fertile soil mixture. The soil was filled in 6 kg polythene bags and watered for
two days to keep fully moist. Small holes were pierced in the sides of polythene bags to let excess
water out and to keep the soil aerated. The current study was conducted at the Botanical Garden of
Islamia University, Bahawalpur, Pakistan.

Experimental design and procedure

The experiment was laid out in a completely randomized design. A total of 120 polythene bags
(pots) filled with the soil mixture were arranged in six groups. Each group contained 20 pots for each
treatment. The seeds of A. sativa were sown in each pot to a depth of 2.5 cm to 5 cm. The pots were
covered with plastic sheets to avoid frost at night and the winds. The pots were properly and
regularly watered until the seeds germinated. Seedlings started emerging at 7 days after sowing.
After that, the thinning of plants was done to maintain 10 plants per pot. All treatments were applied
in three turns at an equal interval of 10 days. The first treatments were given to plants after 10 days
of germination. The oat seedlings were subjected to six different treatments (Control (No Cr, No SA),
CrCl; 2 mM, SA 0.5 mM, SA 2 mM, CrCl;2 mM + SA 0.5 mM, CrCl;2 mM + SA 2.0 mM). Chromium salt
was applied through the soil, whereas SA was applied as a foliar spray. However, the control group
was treated with water without chromium. Each treatment was applied in each pot in equal quantity,
i.e., Cr treatment as 50 mL in soil in each pot and salicylic acid solution as 10 mL as a foliar spray.

Growth parameters and yield

Plants were sampled 10 days after the completion of the third treatment to record
morphological parameters. The soil in the pots was softened, and one plant from each replicate was
carefully uprooted without causing damage to the roots, and then washed with tap water to remove
soil particles. Different traits, such as root length (cm) and shoot length (cm), were measured, and
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the number of leaves was counted. Fresh and dry weights of root and shoot (FWS, FWR, DWS, and
DWR) were also measured properly. At 130 DAS, 10 plants were selected from each treatment, and
their yield (number of seeds and seed weight) attributes were measured. Grain yield was recorded
on a 100-seed weight basis (i.e., 100 grains of A. sativa were randomly selected and weighed). The
number of seeds was measured by taking seeds from 10 plants of each treatment.

Anatomical features

Plant samples were selected randomly from each treatment. The preservative solution (FAA)
containing 50% ethanol, 5% acetic acid, 10% formalin, and 35% distilled water was prepared.
Freehand sectioning methods were employed for sectioning the samples, and double stains (safranin
and fat green) and different grades of ethyl alcohol were used for dehydration (Ruzin, 1999). The
sample slides were examined (4X, 10X, and 40X) with a compound microscope. Snaps were taken
using a smartphone camera. Different anatomical parameters (i.e., stem area, lamina thickness,
vascular bundle area, number of vascular bundles, sclerenchyma thickness, parenchyma cell area,
phloem thickness, metaxylem area, epidermis thickness, epidermal cell area, etc.) of A. sativa were
appraised under a microscope and measured with the help of Microsoft PowerPoint (Koehler et al.,
2020).

Statistical analysis of data

The data for growth, yield, and anatomical attributes with three replications were subjected to
statistical analysis using the R (version 4.4.1) package agricolae. A one-way ANOVA was executed,
followed by Tukey’s HSD test (a = 0.05), the ggplot2 package in the R environment, and Microsoft
Excel was used to prepare the bar graphs for data representation. Principal component analysis (PCA)
was performed to differentiate the various attributes according to the different treatments by the
FactoMineR package, and PCA results visualization was done by the factoextra package.

Results

Growth analysis

Chromium stress resistance of A. sativa was assessed by analyzing the impact of foliar
applications of salicylic acid (SA) on the growth and development of A. sativa. The findings of the
vegetative growth attributes revealed that significant (P < 0.05) variations were observed between
the control group and all other treatment groups. A significant decrease in root length and shoot
length was recorded under Cr stress as compared to the control (Figure 1). The number of leaves
(Figure 1) was also significantly decreased due to Cr application compared with the control group.
However, exogenous applications of salicylic acid (SA) were found to be effective in improving root
length, shoot length, and the number of leaves. The maximum shoot length was recorded at SA 0.5
mM. The positive effect of salicylic acid was also observed on root length. The shoot length of the oat
plant was significantly increased when salicylic acid was applied at a maximum concentration of 2.0
mM as compared to its lower concentration, i,e. 0.5 mM. The combined treatment of Cr and SA
caused a significant improvement in shoot length (Figure 1).

Yield parameters

The impact of Cr toxicity on yield and yield-related components of A. sativa was examined.
Plants showed a negative response to Cr treatments, and a decrease in seed output of plants was
recorded. The current study shows that Cr harmed plant grains, grain weight, and overall biomass.
The number of grains and the weight of grains were significantly (P < 0.05) reduced at Cr as
compared to the control group. The highest quantity of grains was observed at SA 2.0 mM as
compared to all other respective treatments. The number of grains was significantly increased when
applying combined treatments (Cr + SA) as compared to Cr alone. The weight of grains was also
increased significantly by exogenous application of salicylic acid, applied alone as well as in
combination with Cr. The greatest weight of grains was observed at Cr 2 mM + SA 2.0 mM, and the
lowest weight of grains was observed at 2.0 mM Cr stress (Figure 2).
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Figure 1: Root Iength, shoot length, and fresh and dry weights of the root and shoot of Avena sativa at
different treatments. Each bar in the graph represents the mean of three replications (+SD). Mean values
with the same alphabetic letters were not significantly different at P > 0.05, but different alphabets (a, b, c,

d, e and f) were considered as significantly different a
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Figure 2: Number of leaves/plant, number of grains/plant, and weight of 100 grains at different
concentrations of Cr and salicylic acid. Each bar in the graph represents the mean of three replicates (+SD).
Means with distinct letters (a, b, c, d, e, and f) are significant at P < 0.05, but nonsignificant with the same

letters (ab, b, b, ac, etc).
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Anatomical parameters of the stem

Stem area, number of vascular bundles, and sclerenchyma thickness were significantly (P < 0.05)
increased by applying salicylic acid (2.0 mM) and Cr in combination. The maximum thickness of
sclerenchyma and stem area were observed at Cr 2 mM + SA 2.0 mM. Both parameters were
increased by 1.3- and 1.5-fold, respectively, as compared to the respective control group (Table 1). A
nonsignificant difference was observed in sclerenchyma thickness between the (Cr 2 mM + SA 0.5
mM) and (SA 2.0 mM) groups. Metaxylem area and phloem thickness were significantly increased by
increasing SA concentration in the collective form (Cr + SA). At high concentrations (Cr 2 mM + SA 2.0
mM), both parameters were increased by 1.8- and 1.29-fold as compared to the respective control
group. SA 0.2 mM and Cr 2 mM + SA 0.5 mM showed a nonsignificant difference in phloem thickness,
but a significant difference was detected from the control group. A nonsignificant difference was
observed in the parenchyma cell area and epidermal cell area between the control group and the SA
0.5 mM. The number of vascular bundles shows a nonsignificant difference between SA 0.5 mM,
control, and SA 2.0 mM. The Cr 2 mM + SA 0.5 mM and Cr 2 mM + SA 2.0 mM showed significant
differences from each other. Epidermis thickness and cell area were significantly increased by
applying SA in combination (Cr + SA) as compared to the control group (Figure 3).

Table 1: Effects of different treatments on different anatomical parameters (stem area, vascular bundle
area, number of vascular bundles, sclerenchyma thickness, parenchyma cell area, phloem thickness,
metaxylem area, epidermis thickness, epidermal cell area) of the stem. All columns of the table characterize
the three replicates' mean (+SD). Means with different alphabet letters (a, b, c, d, e, f) were considered
significant at P < 0.05, and means with the same letters (ab, b, b., etc) were considered non-significant.

Control Cr (2 mM) SA1 (0.5 mM) SA2 (2.0 mM) Cr+SA1 Cr+SA2

SA 18.02°40.015 11.40+0.100 19.30°+0.100 20.0°0.011 22.23°+0.057 24.14+0.010

VBA 1.203°+0.015 0.120'+0.010 1.543°+0.015 1.42640.011 1.35%+0.010 1.626°+0.005
NVB 11.00%°+1.0 8.666°+0.577  15.00°¢1.00 12.666+0.577 17.666°+0.577 20.333%#1.527
SCT 1.08%+0.01 0.30°+0.10 1.26°%0.010 1.516°+0.015 1.426°40.015 1.666°+0.011
PCA 3.2260.015 1.540°+0.01 3.120%+0.01 3.350°+0.010 3.040°:0.01 4.200°+0.10

PTH 1.040°+0.020 0.210°+0.010 1.106°40.023 1.320°+0.017 1.233°+0.015 1.350°+0.026
MXA 0.233%+0.020 0.166°+0.015 0.296°40.015 0.343°°40.020 0.373°:0.020 0.426%+0.011
ETH 0.320+0.020 0.043°+0.011 0.126%0.020 0.153%+0.020 0.446°+0.015 0.396°+0.005
ECA 0.0243°0.005 0.007°+0.001 0.016%0.005 0.023°°+0.005 0.035°+0.002 0.111%+0.001

SA: Stem area (um’); VBA: Vascular bundle area (um?); NVB: No. of vascular bundles; SCT: Sclerenchyma thickness (um);
PCA: Parenchyma cell area (umz); PTH: Phloem thickness (um); MXA: Metaxylem area (umz); ETH: Epidermis thickness
(um); ECA: Epidermal cell area (umz)

Stem Conl F:,) SA1 (0.5 mM) ;AZ (2.0 M)‘ Cr+ SA
4X

10X

40X

40X

Figure 3 Images of oat (Avena sativa L.) stem illustrating different anatomlcal modifications subjected to
metal stress and SA
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Anatomical parameters of the leaf

A significant increase was recorded in midrib thickness, metaxylem area, phloem thickness, and
bulliform cell area by applying different treatments of salicylic acid and Cr + SA in combined form as
compared to the control group (Figures 4, & 5).
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Figure 4: Different anatomical parameters (midrib thickness, lamina thickness, metaxylem area, mesophyll
cell area, adaxial epidermis thickness, bulliform cell area, abaxial epidermis thickness, phloem thickness,
vascular bundle area, sclerenchyma thickness) of A. sativa leaf. Each bar in the graph represents the mean of
three replicates (xSD). Means with the same alphabets (a, ab, b, a, cd, etc.) were considered as
nonsignificant at P > 0.05; results with different alphabets (a, b, c, d, e, f) were considered as significant at P
<0.05 and P<0.01.
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Leaf Control Cr (2 mM) SA1 (0.5 mM)

SA2 (2.0 mM)

Cr+SAl Cr + SA2

10X

10X

40X
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Figure 5: Different anatomical parameters of A. sativa leaf subjected to different treatments of Cr and SA

In the SA (0.5 mM) and control groups, a nonsignificant difference was observed while studying
the bulliform cell area. Lamina thickness also showed a significant difference between the respective
groups. The highest lamina thickness was recorded at Cr 2 mM + SA 0.5 mM as compared to the
control (Figures 4 & 5). But there was a significant decrease in SA 0.5 mM as compared to the
control. A nonsignificant difference was detected in adaxial epidermis thickness between the control
group and the SA 0.5 mM. The greatest thickness was recorded in Cr 2 mM + SA 0.5 mM, and the
lowest thickness was recorded at Cr alone. Mesophyll cell area was significantly increased by the
foliar applications of salicylic acid and the combined treatment Cr + SA, as compared to the control
group. By analyzing sclerenchyma thickness, a nonsignificant difference was recorded between Cr 2
mM + SA 0.5 mM and Cr 2 mM + SA 2.0 mM, and a significant difference was found as compared to
the control group. A nonsignificant difference in vascular bundle area was found between the SA 2.0
mM and the control group. Moreover, there was a decline in vascular bundle area at SA 0.5 mM and
Cr as compared to the control group (Figures 4 & 5).

Anatomical parameters of the root

The root area of the oat plant was significantly (P < 0.05) increased by applying salicylic acid in
the Cr + SA groups as compared to the control (Table 2). Non-significant results were observed
between the root area of Cr 2 mM + SA 0.5 mM and SA (2.0 mM), control, and SA (0.5 mM) groups.
The highest epidermis thickness, endodermis thickness, and phloem thickness were detected in the
Cr + SA groups as compared to the control group. Xylem thickness was decreased significantly P <
0.05) in the Cr group as compared to the control and all other respective groups. The results also
indicated that the cortex thickness was increased significantly by SA in the Cr + SA groups as
compared to the control. Still, there was no significant difference between Cr 2 mM + SA 2.0 mM and
Cr 2 mM + SA 0.5 mM. The lowest cortex thickness was observed in the Cr group, and the highest
thickness was detected in Cr 2 mM + SA 2.0 mM (Table 2, Figure 6).
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Table 2: Effects of different treatments on different anatomical parameters (root area, epidermis thickness,
phloem thickness, xylem thickness, endodermis thickness, cortex cell area, and cortex thickness) of the root.
Each column in the table presents the mean of three replicates (+SD). Means with different alphabet letters
(a, b, c, d, e, and f) were considered significant at P < 0.05 and P < 0.01, and means with the same letters (ab,
b, b., etc) were considered as non-significant at P > 0.05.

Control Cr (2 mM) SA1 (0.5 mM) SA2 (2 mM) Cr+SA1 Cr+SA2
RA 2.60°40.173 1.566%+0.152 2.76°0.152 3.33°+0.152 3.60°+0.20 4.23%+0.057
ET 0.326°+0.015 0.176°+0.005 0.356+0.005 0.546°+0.005 0.643%+0.015 0.616°+0.005
PT 0.423°40.005 0.250°+0.010 0.42340.005 0.470°0.010 1.80°+0.10 1.266°+0.115
XT 0.60°+0.057 0.116°+0.015 0.270°0.010 0.31640.015 0.463°+0.015 0.546°+0.020
EnT  0.0830.005 0.033%+0.015 0.120°40.020 0.180°+0.017 0.216°+0.015 0.276%+0.015
CCA  0.116°%0.015 0.066°+0.011 0.306"+0.100 0.360°+0.020 0.520°+0.010 0.623°+0.025
cT 0.233°40.057 0.083°+0.005 0.216+0.015 0.276°°40.015 0.316%°+0.015 0.383%+0.05

RA: Root area (um?); ET: Epidermis thickness (um); PT: Phloem thickness (um); XT: Xylem thickness (um); EnT: Endodermis
thickness (um); CCA: Cortex cell area (umz); CT: Cortex thickness (um)

Cr +SA1 Cr+SA2

Control

Cr (2 mM) SA1 (0.5 mM) SA2 (2 mM)

"

B Gy B o Nt NG e

Figure 6: Different anatomical parémeters of A. sativa root exposed to different treatments of Cr and SA
Principal component analysis (PCA)

PCA was performed to determine the variation between the different attributes of oat under
different treatments. We selected the first two principal components, accounting for about 92.7% of
the total variance (PC1: 78.5% and PC2: 14.2%). The scatterplot of PCA demonstrated (Figure 7A) the
distribution of different attributes of oat plants according to PCA1 and PCA2. PCA1l is strongly
correlated with RFW, SFW, and SL in the positive part. MCA and LT or PT and MT showed a strong
correlation with PCA2 in a positive direction. Four distinct cluster groups were seen while studying
the treatment groups (Figure 7B). The clusters close together show similar physiological responses
according to the treatments. The Cr separated from PCA1l represents the significant impact of
chromium stress.

Discussion

As a heavy metal contaminant, Cr has a considerable harmful effect on plants (Kundu et al.,
2018). In plants, Cr toxicity harms a variety of physiological, biochemical, and molecular properties,
slowing growth and lowering total yield. According to Dotaniya et al. (2014), increased Cr deposition
in plants reduces seed germination and decreases root and shoot development rates, affecting total
biomass and vyield. Research suggests that high levels of Cr in plants can reduce chlorophyll
concentration and inhibit photosynthesis (Sharma et al., 2020; Qin et al., 2024). Previous research
has demonstrated that excessive Cr deposition in plant tissues disrupts the cellular cycle, water and
mineral balance, enzyme function, nitrogen absorption, the antioxidant system, and other critical
metabolic functions (Ugwu and Agunwamba, 2020; Ali et al., 2023). In the current study, we
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investigated the effects of Cr toxicity on the
growth, yield, and anatomical attributes of Bt

A. sativa. All growth and yield attributes in A . aBn
A. sativa were significantly reduced due to .
the exogenous application of Cr. "

Many other previous researchers have
found similar results, as Cr treatments have
been shown to lower root and shoot lengths, e
as well as fresh and dry weights, in various
plant species, including Oryza sativa (Ma et =
al., 2016), Brassica napus (Gill et al., 2015), . Ne
and Lacy Phacelia (Phacelia tanacetifolia) oe Te
(Inci, 2025). Likewise, shoot development in PCT ore oo
Allium cepa was inhibited when Cr (lll) in 2 -
varying  concentrations was  applied B
(Nematshahi et al., 2012; Naseem et al.,
2024).

Our findings suggest that SA is involved
in the improvement of parameters linked to
the development of A. sativa seedlings
under Cr stress. Our results were similar to
those of earlier-published studies in which
SA application significantly improved the
growth of mung bean (Imran et al., 2021) 2
and rice (Wang et al., 2021) under cadmium °
stress. This suggests that SA can lower the ® * pc1 (7a.s%) 4
toxicity caused by heavy metal stress during  Figure 7: 2D scatterplot (A) represents the
the vegetative growth phase by enhancing distribution of growth, yield, and leaf anatomical
photosynthesis, water relations, and nutrient

parameters (i.e. RDW = root dry weight, SDW =
absorption through detoxification processes  shoot dry weight, NG = number of grains, RFW =
(Zhang et al., 2022).

-
0.0 - RL

PC2

PC2 (14.2%)
=]

'
-

root fresh weight, SFW = shoot fresh weight, NL =

Of the different organs of the plant, number of leaves, WG = weight of grains, RL= root

length, SL= shoot length, MCA = mesophyll cell area,

ST = sclerenchyma thickness, PT = phloem thickness,

MA = metaxylem area, VBA = vascular bundle area,

ABT = abaxial epidermis thickness, ADT = adaxial

epidermis thickness, LT = lamina thickness, BCA =

bulliform cell area, and MT = midrib thickness), and

(B) represent treatments according to the two main
princinal compbonents.

roots play a significant role in resisting all
types of soil-borne stresses, including those
of metals. Moreover, as the first organ to
come into contact with the soil, the root is in
charge of absorbing and moving ions and
water. In our study, the root anatomical
features of A. sativa were adversely affected

by the Cr stress. It has been observed that in

Vigna unguiculata (Fontenele et al., 2017) and O. sativa (Ashraf and Tang, 2017) structural changes in
their roots occurred due to metal-induced oxidative stress, which may reduce their resilience. The
most prevalent modifications are cell wall modifications in exodermis, which are in direct contact
with contaminants (Yadav et al.,, 2021). Plants under severe mental stress generally have smaller
roots due to decreased vascular bundle size, cell division, and cell size (Batool et al., 2015; Gao et al.,
2022). However, exogenous supplementations of salicylic acid demonstrated that increased vascular
tissues, specifically the metaxylem area, in A. sativa under stress conditions can improve water and
nutrient conduction and reduce resistance (Horie et al., 2012; Strock et al., 2021). Root area, cortex
thickness, and cortex cell area of A. sativa were also declined by heavy metal stress (Cr), but foliar
applications of SA significantly enhanced their size, particularly at Cr + SA 2.0 mM. Likewise, exposure
to Cd (250-1000 puM) reduced the root width of chickpea plants by reducing the number of cortical
cell layers (from 12-14 in control plants to 8-10 in Cd-treated plants) (Liza et al., 2020); chickpea plant
roots treated with Cd (250-1000 uM) showed decreased diameter of metaxylem vessels. Heavy
metals reach the stem by the root system through vascular tissues, causing structural changes mostly
in the xylem and adjacent tissues (Yadav et al., 2021). According to Liza et al. (2020), chickpea plants
exposed to Cd (250-1000 uM) exhibited a decrease in stem diameter, primarily due to smaller cells
and reduced vascular components. Similar results were recorded in the current investigation (Figure
3, Table 1). Sclerification, which occurs outside of the cortex and epidermis, is one of the most
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significant structural changes caused by increasing stress levels. Sclerification strengthens plant
tissues (Lo et al., 2008; Sarwar et al., 2022), controls water loss, and avoids desiccation (Wasim et al.,
2022). In our investigation, sclerification outside of the vascular bundles and cortical area
significantly declined under Cr stress, but significantly increased at Cr + SA 2.0 mM in A. sativa stem
(Figure 3), which is a critical anatomical response to stress situations that shields the stem from
injury and provides mechanical strength. Sclerification promotes species survival in stressful
circumstances (Naz et al., 2018). In the current experiment, salicylic acid spraying mitigated the
heavy metal stress by enhancing the vascular bundle area and sclerenchyma thickness significantly in
A. sativa stem.

Only very small amounts of metals are translocated to leaves; even small amounts can result in
significant structural changes, and a reduction in the size of the leaf's cells and vascular bundles,
which may have an impact on stomatal parameters and pigment production (Batool et al., 2015; Téth
et al., 2024). The midrib is made up of cortical cells as well as specialized tissues such as phloem and
xylem, which are necessary for the flow of water and minerals in leaves (Lechthaler et al., 2019). A
significant increase was observed in metaxylem area, phloem thickness, and vascular bundle area in
A. sativa as a sign of adaptation in stress conditions by foliar application of SA. Also, a considerable
increase in the number of bulliform cells was observed in leaf blades, demonstrating their
significance in leaf rolling (Matschi et al., 2020).

The current investigation concluded that yield and growth parameters (root-shoot length and
fresh and dry weight) of A. sativa were seriously affected by the Cr stress. Anatomical parameters of
A. sativa were also altered by the Cr stress. The results of our study suggest that foliar applications of
salicylic acid in appropriate concentrations increased yield and growth attributes of A. sativa under
Cr stress. Chromium significantly impacts crop growth, yield, and grain quality. It is necessary to
investigate rapid, efficient, and cost-effective methods for removing Cr from soil and other
environmental sites.
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