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Abstract 
The most emerging resistance mechanism against β-lactam antibiotics 
present in bacteria is the production of β-lactamases. The aim of this study 
was to explore the phytocompounds of Camellia sinensis (green tea) that can 
inhibit the activity of β-lactamases. Moreover, the antibacterial effect of its 
extract with a combination of antibiotics against resistant bacterial strains 
was also appraised. In silico docking was carried out against the resistance 
causing enzymes such as AmpC and SHV-1. Antimicrobial susceptibility 
testing against bacterial strains, i.e., Klebsiella pneumoniae and Escherichia 
coli, was performed. Then, for exploring the synergistic effects, both 
antibiotics and green tea extract were applied in combination. The docking 
studies revealed that the inhibitors like epigallocatechin gallate with AmpC, 
and myricetin with SHV-1 enzyme displayed high binding affinities of -8.2 
kJ/mol, and -7.5 kJ/mol, respectively. The in vitro combination of C. sinensis 
extract with ampicillin and penicillin also potentiated the antibacterial 
activity of these antibiotics. Thus, the study elucidated that the 
phytochemicals of C. sinensis could inhibit β-lactamases produced by the 
pathogens. Also, it has enhanced antimicrobial effects when combined with 
antibiotics. 
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Introduction 

The growing rate of antimicrobial resistance in bacteria is a major health concern these days. Out of 
all resistance mechanisms adopted by bacteria, the most prominent one is the inactivation of antibiotics 
through β-lactamases (βLs). These are the enzymes involved in the hydrolysis of various β-lactam 
antibiotics such as penicillin, carbapenems, and cephalosporin, etc. (Kapoor et al., 2017; Narendrakumar 
et al., 2023). Among Enterobacteriaceae members, different pathogens like Escherichia coli and Klebsiella 
pneumoniae are becoming resistant to β-lactam antibiotics as they are all able to produce βLs to 
inactivate them. The most emerging βLs are the extended-spectrum beta-lactamases (ESBLs) such as 
TEM, SHV and CTX-Ms etc. that are the leading cause of antibiotic ineffectiveness in K. pneumoniae and 
E. coli (Freitas et al., 2013; Husna et al., 2023). Hundreds of ESBLs have been recognized so far in different 
Enterobacteriaceae members. All the pathogens producing ESBLs being frequently responsible for 
diarrhea and urinary tract infections are difficult to treat with various β-lactams (Raut et al., 2015). 
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Resistance in K. pneumoniae is becoming a global issue because many of the broad-spectrum 
antibiotics, including various β-lactams, are being considered ineffective for treating its infections 
(Ferreira et al., 2019; Sharma et al., 2023). Half of nosocomial and 90% of community-acquired UTIs are 
caused by E. coli (Farshad et al., 2012; Zhou et al., 2023). However, the range and incidence of 
antimicrobial-resistant UTIs have increased in recent years (Zhou et al., 2023). Due to various intrinsic 
and extrinsic factors, these infectious bacterial pathogens have become resistant to most of the 
antibiotics, like aminoglycosides, fluoroquinolones, and β-lactams (Raeispour and Ranjbar, 2018). 
Therefore, to combat these pathogens, antimicrobial compounds derived from various natural sources 
such as plants have become potential sources for such vital compounds (Radji et al., 2013; Vaou et al., 
2021; Karnwal and Malik, 2024). Medicinal plants have been proved effective against resistant pathogens 
and have also various advantages over synthetic drugs. Plant-derived compounds have good antibacterial 
effects, greater therapeutic benefits and less side-effects, so they can be used to develop better drugs 
(Parvez et al., 2019; Zhou et al., 2023).  

Various secondary metabolites derived from plants contain drug-like characteristics. For the 
identification of such metabolites, different advanced bioinformatics tools are available nowadays 
instead of other time-consuming approaches (Parida et al., 2021; Javid and Ahmed, 2023). In silico 
molecular docking is the best method for screening different natural compounds that are considered as 
potential drugs against pathogens (Romano and Tatonetti, 2019; Vistoli et al., 2023; Zhang and Li, 2024). 
Thus, this study aimed to identify the phytochemicals present in Camellia sinensis leaves that can 
effectively inhibit βLs.  

Materials and Methods 

Molecular docking 

Molecular docking was carried out to determine the mode of interaction between bacterial 
enzymes and phytochemicals (ligands) with the help of MGL-docking tools and AutoDock Vina (Fan et al., 
2019). Briefly, from the PDB database (https://www.rcsb.org/), 3D structures of four bacterial enzymes 
such as AmpC, and SHV-1, with the attached ligands AMP, and 1OG respectively, were obtained. The 3D 
structures of phytocompounds of Camellia sinensis were retrieved from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) in SDF format and then converted to PDBQT by the AutoDock tools 
(Trott and Olson, 2010). Also, Avibactam, a synthetic βL inhibitor, was included as a control. All four 
enzymes were prepared for docking by removing water molecules and adding polar hydrogens, and then 
converted into the PDBQT file using the AutoDock tools (Guedes et al., 2014; Stanzione et al., 2021). The 
grid box was adjusted around the ligand attached to enzymes and all the X, Y and Z coordinates were 
recorded to get active site information.  

Subsequently, the configuration text file and PDBQT file of the ligands and the enzymes were pasted 
into one folder and prepared for docking (Javid and Ahmed, 2023; Muhammed and Aki-Yalcin, 2024). 
Docking was performed using AutoDock Vina by the vina command (“\vina\vina.exe” --config conf.txt --
log log.txt) in command prompt. After the docking was complete, the docked complex was analyzed 
through PyMOL and their binding affinity values (kJ/mol) were examined.  

Extract preparation and phytochemical analysis 

Dried leaves of Camellia sinensis were collected from a local grocery store and after proper plant 
identification, the extract was prepared by maceration (Barreira et al., 2021). Then, the crude extract was 
concentrated to obtain in dried powder form, which was freeze-dried until further use (Gulo et al., 2021). 
Different biochemical procedures were performed for the qualitative screening of phytochemicals such 
as phenols, alkaloids, saponins, tannin, triterpenes, and flavonoids present in the C. sinensis extract 
following Adamu et al. (2022). 

Bacterial strains 

Fully characterized clinical isolates of K. pneumoniae and E. coli were obtained from the Institute of 
Microbiology and Molecular Genetics, University of the Punjab. These clinical strains were stored at -
80 °C under aseptic conditions. The susceptibility of these strains against a variety of β-lactam antibiotics 
such as cefotaxime 30 µg (CTX), cefoxitin 30 µg (CXT), penicillin 10 µg (PEN) and ampicillin 10 µg (AMP) 
was determined by the disc diffusion assay according to CLSI instructions (CLSI, 2012; Cepas and Soto, 
2020).  

Antibacterial activity of plant extract 

The antibacterial activity of different concentrations of the plant extract was determined by the well 
diffusion assay under CLSI guidelines (CLSI, 2012; Danish et al., 2020). Briefly, Mueller-Hinton (MH) agar 
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plates were inoculated with freshly prepared bacterial cultures. Then, the wells were made in agar plates 
under aseptic conditions. Different concentrations of plant extract, i.e., 50 mg/mL, 150 mg/mL, and 200 
mg/mL were prepared by resuspending the powdered extract in methanol, and poured in the respective 
wells. The plates were then incubated at 37 °C, and the zones were measured after 24 h. All the in vitro 
experiments were run in triplicates. 

Synergistic activity of plant and antibiotics 

The synergistic assay was performed by the D-zone assay to analyze the combined effect of 
antibiotics with the plant extract as compared with the individual effects of antibiotics, as described by 
CLSI (Arora et al., 2021; Gadisa and Usman, 2021). For this purpose, the antibiotics discs of cefotaxime 30 
µg (CTX), cefoxitin 30 µg (CXT), penicillin 10 µg (PEN) and ampicillin 10 µg (AMP), purchased from Abtek 
Biological Ltd., were separately soaked each in 200 mg/mL concentration of C. sinensis extract in an 
Eppendorf under aseptic conditions. After the antibiotics discs were got soaked with the plant extract, 
they were then placed equidistantly onto the already inoculated MH agar. All plates were placed in an 
incubator at 37 oC for 24 h. The zone of inhibition around each antibiotic was measured. 

Time kill assay 

As the highest activity was observed in case of combination of penicillin and plant extract, therefore, 
this combination was subjected to the time-kill assay to further analyze the synergistic interaction 
(Amaral et al., 2020; Pal and Tripathi, 2020). Briefly, 100 µL MH broth, 10 µL penicillin (10 to 150 mg/mL) 
and 20 µL plant extract (0.5-4 mg/mL) were added in the wells of the microtiter plate. Then, an aliquot of 
10 µL of freshly cultured bacterial strains was added in each well, and the plates were incubated at the 
room temperature. The absorbance was recorded at 610 nm every 3 h. 

Results 

In silico analysis 

The two commonly reported bacterial βLs that are involved in bacterial resistance mechanisms were 
selected to dock with the phytochemicals of C. sinensis to determine how they efficiently bind with the 
enzymes and result in the inhibition of the bacterial growth. The phytocompounds such as 
epigallocatechin gallate with AmpC, and myricetin with SHV-1 enzyme produced an efficient binding 
energy of -8.2 kcal/mol and -7.5 kcal/mol, respectively (Table 1). The docked complex of the enzymes 
with phytochemicals was also analyzed by 
PyMOL. The avibactam was used as the 
synthetic inhibitor. Binding energy 
obtained after docking the avibactam 
with AmpC and SHV-1 was -5.9 kcal/mol 
and -5.4 kJ/mol, respectively.  

Epigallocatechin gallate, an ester of 
gallic acid and epicatechin, showed 
highest affinity for AmpC βL. The 
interaction of epigallocatechin gallate at 
the active site of AmpC βL is shown in 
Figure 1. Figure 2 shows that myricetin, a 
polyphenolic flavonoid, exhibited highest 
affinity for SHV-1 βL, i.e., -7.5 kJ/mol.  
 

  
Figure 1. Docking complex and interaction of 
epigallocatechin gallate within binding site of AmpC βL 

Figure 2. Docking complex and interaction of 
myricetin within the binding site of SHV-1 βL 

Table 1. Phytochemicals of C. sinensis docked with respective 
enzyme, along their top affinity scores (kJ/mol) 
 

Phytochemicals Pubchem ID 
Binding score (kJ/mol) 
SHV-1 AmpC 

Epigallocatechin gallate 65064 -5.7 -8.2* 
Rutin 5280805 -5.5 -8.1 
Theaflavin 169167 -6.1 -7.9 
Isoquercitrin 5280804 -6.2 -7.5 
Myricetin 5281672 -7.5* -7.4 
Epicatechin 72276 -6.5 -7.3 
Epigallocatechin 72277 -6.9 -7.3 
Avibactam 9835049 -5.4 -5.9 
* Phytochemicals with highest binding affinities 
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Phytochemical screening 

The C. sinensis extract was also screened for the 
presence of various phytochemicals by the 
biochemical testing. The results of the screening 
indicated the presence of phytochemicals of various 
types such as phenols, flavonoids, alkaloids, saponins, 
and tannins in the extract of C. sinensis, as shown by 
color changes in Figure 3.  

In vitro antibacterial assay 

Antibiotic susceptibility was investigated against 
two strains of K. pneumoniae KPSA and KPSB and two 
of E. coli, i.e., ECSA and ECSB, for each of antibiotics 
such as cefotaxime 30 µg (CTX), cefoxitin 30 µg (CXT), 
penicillin 10 µg (PEN) and ampicillin 10 µg (AMP). The results from the disc diffusion assay show that no 
zone of inhibition was produced around any of the antibiotic discs against all clinical strains, so they were 
considered resistant to each antibiotic (Table 2). The antibacterial activity of plant extract determined by 
the well diffusion assay showed no significant activity for different concentrations tested (Table 2). 

Synergistic activity 

The synergistic effects of antibiotics with C. sinensis extract showed that when the extract was 
combined with penicillin and cefotaxime discs, 10 mm and 11 mm zones of inhibition were observed, 
respectively, against Klebsiella KPSA strain. In case of KPSB strain, inhibition zones of 15 mm, 10 mm and 
11 mm were produced when the extract was combined with penicillin, cefotaxime and cefoxitin, 
respectively. The E. coli strain ECSA, showed a 10 mm zone with penicillin, 18 mm zone with ampicillin 
and 7 mm zone of inhibition with cefotaxime on combining with C. sinensis extract. However, the extract 
exhibited the inhibition zones of 11 mm, 14 mm, and 15 mm diameter on synergism with penicillin, 
ampicillin and cefotaxime discs, respectively, against the ECSB strain (Table 2). 

 
Table 2. In vitro antibacterial activity of standard antibiotics, C. sinensis extract, and antibiotics plus C. sinensis 
extract against recommended test strains  
 
Strain 
type 

Diameter of zone of inhibition (mm) 
Standard antibiotics C. sinensis extract Antibiotics plus extract 

PEN10 AMP10 CTX30 CXT30 CS50 CS100 CS200 PEN10 AMP10 CTX30 CXT30 
KPSA - - - - - - - 10 - 11 - 
KPSB - - - - - - - 15 - 10 11 
ECSA - - - - - - - 10 18   7 - 
ECSB - - - - - - - 11 14 15 - 
PEN 10 = penicillin 10 µg; AMP10 = ampicillin 10 µg; CTX30 = cefotaxime 30 µg; CTX30 = cefoxitin 30 µg; CS50 = C. 
sinensis extract 50 mg/mL; CS100 = C. sinensis extract 100 mg/mL; CS200 = C. sinensis extract 200 mg/mL; 

Time kill assay 

In case of K. pneumoniae, penicillin when administered with the C. sinensis extract showed a 
significant growth inhibition as compared to when the antibiotic or plant extract was administered 
individually (Figure 4). Although penicillin alone was able to inhibit the E. coli growth over the period of 
12 h, significantly high growth inhibition was observed in the combination form. The plant extract alone 
was not able to produce any visible growth inhibition against E. coli (Figure 5).  

  
Figure 4. Time kill graph showing growth inhibition of 
K. pneumoniae over the period of 12 h 

Figure 5. Time kill graph showing growth inhibition of 
E. coli over the period of 12 h 

 
 
Figure 3. Qualitative testing of phytochemicals 
of C. sinensis extract compared with the control 
test tube (on left side) 
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Discussion 

The inappropriate and indiscriminate use of antimicrobial agents has become a major cause of 
antibiotic resistance these days. This situation is becoming deadliest as many of the bacterial strains have 
adapted different mechanisms of resistance to counter antibiotics, one such mechanism is the antibiotic 
inactivation through βLs (Dugassa and Shukuri, 2017). In this study, we were mainly concerned with two 
βLs, AmpC, and SHV-1, that are involved in the inactivation of various β-lactams. Different studies have 
reported the contributing activity of these enzymes in increasing resistance in K. pneumoniae. Moya and 
Maicas (2020) described the occurrence of different resistant genes in the K. pneumoniae encoding 
various types of Class A βLs. 

When the threatening situation increases, then plants are considered as the main source of drugs to 
reverse antibiotic resistance. Camellia sinensis contains the phytochemicals that show significant 
antibacterial, antiviral and anti-inflammatory activities (Barbieri et al., 2017). Thus, this study focused on 
identifying potential βLs inhibitors from C. sinensis by utilizing in silico and in vitro tools. One of the most 
influential methods is the molecular docking approach that can screen the abundance of phytochemicals 
computationally in affordable time. This method describes the affinity of a particular phytochemical 
against a specific enzyme in terms of binding energy (kJ/mol) (Rampone et al., 2021). Thus, keeping these 
grounds in mind, in silico analysis of docking enzymes and phytochemicals and their in vitro analysis 
against certain resistant bacteria has been carried out in this study. The in silico analysis showed that 
epigallocatechin gallate had the highest affinity of -8.2 kJ/mol against AmpC βL and proved as 40 percent 
more effective compared to the synthetic inhibitor, avibactam. Kalalo et al. (2021) have also reported the 
antibacterial activity of epigallocatechin gallate against various infectious pathogens. For SHV-1 βLs, 
docking with the myricetin showed binding affinity as -7.5 kcal/mol as compared to -5.4 kJ/mol by 
avibactam. Various other studies also have confirmed the inhibitory activities of myricetin against βLs, 
hence, proving its ability to protect various β-lactams from hydrolysis (Wang et al., 2020; Javid and 
Ahmed, 2023). The differences in the results of this study could be attributed to the variable docking 
procedures used against different β -lactamases in previous studies.  

In vitro analysis revealed that the selected strains of K. pneumoniae as well as E. coli were found to 
be highly resistant to cefotaxime, cefoxitin, ampicillin and penicillin. Palzkill (2018) also supported the 
idea that class A βLs hydrolyze penicillin and various newer generation cephalosporins in K. pneumoniae. 
Jameel et al. (2014) reported that AmpC βLs in E. coli cause high resistance against cefoxitin and 
cefotaxime. Liakopoulos et al. (2016) described that various SHV βLs in Enterobacteriaceae members 
have evolved resistance against various β-lactams.  

The synergistic activity of C. sinensis extract with antibiotics produced the striking difference. 
Without any synergistic activity with extract, all the strains were resistant to the tested antibiotics, but in 
contrast, with the combination of C. sinensis, a zone of inhibition was observed around the antibiotics. 
Several studies have reported that the synergistic effect of different polyphenols such as epicatechin, 
epigallocatechin and epigallocatechin gallate with antibiotics produced the enhanced antibacterial 
activity against different Enterobacteriaceae species. (Haghjoo et al., 2013; Stephen et al., 2014; Manso 
et al., 2021). The time kill assay also supported that the C. sinensis extract contains a variety of 
phytocompounds that can activate the β-lactam antibiotic, such as penicillin, which alone did not 
produce any significant results. 

The in silico and in vitro analyses elucidate that how various phytochemicals from green tea can be 
used to inhibit βLs present in the bacterial species and how we can increase the effectiveness of resistant 
antibiotics with the combination of green tea extract. Through in silico analysis, we can identify all 
effective phytochemicals that have highest binding affinity with certain βLs. So, in vitro analysis shows 
that when these antibiotics are used synergistically with C. sinensis extract they can effectively inhibit the 
growth of pathogens.  

Conclusion  

This study suggests that phytochemicals present in green tea are the major sources of β-lactamase 
inhibitors. Furthermore, the green tea extract can restore the effect of β-lactam antibiotics synergistically 
and can be used as a potent drug against β-lactamase producing resistant strains of K. pneumoniae and 
E. coli. 
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